STak
Hello there. To solve this question, we'll have to remember some properties about exponential growth and solving exponential equations, inequalities.
Given the colonies A and B, for which the number of bacteria are, respectivelly, modelled by the equations:
![\begin{gathered} A(t)=12e^(0.4t) \\ B(t)=24e^(kt) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/thu7igq2mspgm86bdh6x1y631xoil38tf2.png)
For t > 0 in hours. We have to determine:
a) The number of bacteria in colony A after 4 hours.
For this, we take t = 4 and calculate the following number:
![A(4)=12\cdot e^(0.4\cdot4)=12\cdot e^(1.6)](https://img.qammunity.org/2023/formulas/mathematics/college/g5c8s8d2hofqlbdjee8n4i6cerwah19ro2.png)
Using a calculator, we get the approximation:
![A(4)\approx59\text{ bacteria}](https://img.qammunity.org/2023/formulas/mathematics/college/84ux1hsbqnruxvt02jz17bi7ses2hctti4.png)
b) How long does it take for the number of bacteria in colony A to reach 400?
For this, we have to determine t such that:
![A(t)=400](https://img.qammunity.org/2023/formulas/mathematics/college/88h5ur9q2c4uv9xzpak03nqdtrf92h6jtx.png)
Hence plugging the exponential function, we get
![12e^(0.4t)=400](https://img.qammunity.org/2023/formulas/mathematics/college/5b6yqnxnriw7xxoy6xiri8df8n08wd4xvo.png)
Divide both sides of the equation by a factor of 12
![e^(0.4t)=(100)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/lld61wupy3wsyh09nrzvapylba516uy3dw.png)
Take the natural logarithm on both sides of the equation
![\ln(e^(0.4t))=\ln\left((100)/(3)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/d1wr8321cj49nhkfadinsrs8zgla6kxv0y.png)
Apply the following property:
![\log_a(a^b)=b\cdot\log_a(a)=b\cdot1=b](https://img.qammunity.org/2023/formulas/mathematics/college/c7mzwbhkbik6nbss1onq4ja6npmm6zou5j.png)
Knowing that:
![\log_e(x)=\ln(x)](https://img.qammunity.org/2023/formulas/mathematics/college/ul7c8xcgp1pj14xllqkzj36h4u7ije5lms.png)
Hence we get:
![0.4t=\ln\left((100)/(3)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/9p74j575ruoefmit0fyqfum8j0whbil0g2.png)
Multiply both sides of the equation by a factor of 2.5
![\begin{gathered} 2.5\cdot0.4t=2.5\cdot\ln\left((100)/(3)\right) \\ \\ t=2.5\ln\left((100)/(3)\right) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o2shks0oqrpcbt5wh6fwsv1p4xpucgt8tb.png)
Using a calculator, we get the following approximation:
![t\approx8.76\text{ hours}](https://img.qammunity.org/2023/formulas/mathematics/college/lbwlw3c06stawjrtqqlarzkjfjgla69y3d.png)
c) Find the value of k
For this, we have to use the fact that there are 60 bacteria in colony B after four hours;
Hence we get
![\begin{gathered} B(4)=60 \\ \\ 24e^(k\cdot4)=24e^(4k)=60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pcsps14cul7m5ue8j7av39nwhmm1fisax6.png)
Divide both sides of the equation by a factor of 24
![e^(4k)=(5)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/byp63q5udllq67ijdrgvoouad2i22jxf6s.png)
Taking the natural logarithm of both sides of the equation
![\ln(e^(4k))=\ln\left((5)/(2)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/rrm7cvp2wl9cxm6pvbtx15zmc7kilqesz3.png)
Applying the property presented before, we get
![4k=\ln\left((5)/(2)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/e87c0ni2i0kx4eljj9bdm0gyti81e0h73q.png)
Divide both sides by a factor of 4
![k=(1)/(4)\cdot\ln\left((5)/(2)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/8nxal5dfq0155eae64eo32pqjgv3nbh63z.png)
In this case it is better to keep the answer like this instead of using an approximaton.
With this, we have that B(t) will be
![B(t)=24e^{(1)/(4)\ln\left((5)/(2)\right)t}=24\cdot e^{\ln\left((5)/(2)\right)^{(t)/(4)}}=24\cdot\left((5)/(2)\right)^{(t)/(4)}](https://img.qammunity.org/2023/formulas/mathematics/college/fyxit97oyw8vprr27o8ks8sfuq2oh760ct.png)
But we can keep it in the first form in order to solve part d).
d) The number of bacteria in colony A first exceeds the number of bacteria in colony B after n hours, where n is in integers. Find the value of n.
For this, we have to solve the following inequality:
![\begin{gathered} A(n)>B(n) \\ \\ 12e^(0.4n)>24e^{^{(1)/(4)\ln\left((5)/(2)\right)n}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5cgw4ggbqxfzeup8g67wnopgff1w1813g0.png)
Since both exponential functions are powers of e and
![e\approx2.7182818\cdots>1](https://img.qammunity.org/2023/formulas/mathematics/college/fm389lui759thd8yko8744rv4u29n8tfgf.png)
We can solve the inequality without having to swap its order.
Divide both sides of the inequality by a factor of
![24e^(0.4n)](https://img.qammunity.org/2023/formulas/mathematics/college/8reovmsnf2xdip80243287uxlnbqwkv969.png)
Hence we get
![e^{(1)/(4)\ln\left((5)/(2)\right)n-0.4n}<(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/e3a05d4e7n5k1a7zxf8oge2eve4ujwszzx.png)
Since the logarithm is an one-to-one function, we take the natural logarithm on both sides of the inequality, preserving the order, therefore we get:
![\ln(e^{^{\left[(1)/(4)\ln\left((5)/(2)\right)-0.4\right]n}})<\ln((1)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/ug8k0icoj9ca4kez0m6zl0zzf1y5mo93j9.png)
Applying the following property:
![\begin{gathered} \ln\left((a)/(b)\right)=\ln(a)-\ln(b),\text{ b not equal to zero;} \\ \\ \ln(1)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2uyr85xy9opwg58abqjr8ip06hk9lyfns7.png)
We get that
![\ln\left((1)/(2)\right)=-\ln(2)](https://img.qammunity.org/2023/formulas/mathematics/college/4cis5hapf9ft1zd427u4deqjxsrpurn3n7.png)
Hence we get by applying the very first property that
![\left[(1)/(4)\ln\left((5)/(2)\right)-0.4\right]n<-\ln(2)](https://img.qammunity.org/2023/formulas/mathematics/college/pmq2nm47zsv3rx9m5znmymltuzenw8fy8o.png)
Divide both sides by a factor of
![(1)/(4)\ln\left((5)/(2)\right)-0.4](https://img.qammunity.org/2023/formulas/mathematics/college/1f3hyh4a7u4h8v2kdrj2r199rgwv0568zx.png)
Notice it is a negative number, hence we swap the inequality sign as follows
![n\gt-\frac{\operatorname{\ln}(2)}{(1)/(4)\operatorname{\ln}\left((5)/(2)\right)-0.4}]()
Which evaluates to
![n>4.055](https://img.qammunity.org/2023/formulas/mathematics/college/rzldpy0pnyv70gxf326925zc6a50d1ozk5.png)
Since n is an integer, then we say
![n=5](https://img.qammunity.org/2023/formulas/mathematics/high-school/w7k28sqtw26xmlrjnwsz1wjw6z9u8yyu00.png)
Is the first hour for which the number of bacteria on colony A exceeds the number of bacteria on colony B.