Since we have the first derivative of function f, then, we can find f as follows:
![f(x)=\int f^(\prime)(x)dx](https://img.qammunity.org/2023/formulas/mathematics/college/9xc6r8pptb0g08ahhioroq7fcy2db2awdw.png)
We can rewrite the given expression as follows
![f^(\prime)(x)=6x^{(1)/(2)}+5x^{(3)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/amub5tkmlsxog2wmzcnwgznjymi3iqcydl.png)
because
![6√(x)=6x^{(1)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/rzf6auc7leiqq4wrn1qbbm0w8cyheelozg.png)
and
![5x√(x)=5x^{(3)/(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/a1u0czaairbk7d32cw2kc57b4birwldy8j.png)
So, we need to compute
![f(x)=\int(6x^{(1)/(2)}+5x^{(3)/(2)})dx](https://img.qammunity.org/2023/formulas/mathematics/college/ax24xpsomwjpryd1pi7oyuon9s057mcnqi.png)
From the integration formula:
![\int x^ndx=(x^(n+1))/(n+1)](https://img.qammunity.org/2023/formulas/mathematics/college/o319nyhmnqbjqshffczauu6zd3fok3u93v.png)
we get
![f(x)=6\frac{x^{(1)/(2)+1}}{(1)/(2)+1}+5\frac{x^{(3)/(2)+1}}{(3)/(2)+1}+C](https://img.qammunity.org/2023/formulas/mathematics/college/23ssqrft3vu5xa6ix9991m8h313q3t32t2.png)
where C is the constant of integration. From this result, we have
![f(x)=6\frac{x^{(3)/(2)}}{(3)/(2)}+5\frac{x^{(5)/(2)}}{(5)/(2)}+C](https://img.qammunity.org/2023/formulas/mathematics/college/jpp1hyaj0vvvplq6zzexs0mtxq1hv11oiw.png)
which gives
![f(x)=4x^{(3)/(2)}+2x^{(5)/(2)}+C](https://img.qammunity.org/2023/formulas/mathematics/college/tmojwd5liwtkpkn04rjjj2ig3y6i2mfgaj.png)
or equivalently,
![f(x)=4√(x^3)+2√(x^5)+C](https://img.qammunity.org/2023/formulas/mathematics/college/rfp4arg1xtvpa6uxhg2kx23fdv4z6yztll.png)
Finally, we can find C by substituting the given information about f(x), that is, f(1)=7. It yields,
![7=4√(1^3)+2√(1^5)+C](https://img.qammunity.org/2023/formulas/mathematics/college/tbfmcj2863844apapbzc3vk3cbw6bqz4up.png)
which gives
![\begin{gathered} 7=4+2+C \\ 7=6+C \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/191hq0erxrv20ck5978w0ntm59httzotak.png)
Then
![C=1](https://img.qammunity.org/2023/formulas/mathematics/college/gkz2d0d0vjb2zs14ruipffko8qwho66cra.png)
Therefore, the answer is:
![f(x)=4√(x^3)+2√(x^5)+1](https://img.qammunity.org/2023/formulas/mathematics/college/d7mikzgayuq3fi7rux1m70we6vi7d58qyx.png)