94.1k views
4 votes
Use -2,-1,0, 1, and 2 for x and find the corresponding values of f(x) for the following exponential function. Then, choose which graph represents the exponentialfunction.f(x)=3(x-1)For each value of x, find the corresponding value for f(x).Xf(x)=3(x-1)-2-1012

Use -2,-1,0, 1, and 2 for x and find the corresponding values of f(x) for the following-example-1
User Fmo
by
5.2k points

1 Answer

4 votes
Answer:

when x = -2, f(x) = 1/27

when x = -1, f(x) = 1/9

when x = 0, f(x) = 1/3

when x = 1, f(x) = 1

when x = 2, f(x) = 3

Step-by-step explanation:

Given:


f(x)\text{ = 3}^(x-1)

To find:

to get the y values for x = -2, -1, 0, 1, and 2

To determine the corresponding values of f(x), we will substitute each of the values into the given function


\begin{gathered} f(x)\text{ = 3}^(x-1) \\ when\text{ x = -2} \\ f(x)\text{ = 3}^(-2-1)\text{ = 3}^(-3) \\ f(x)\text{ = }(1)/(3^3)\text{ } \\ f(x)\text{ = }(1)/(27) \\ \\ when\text{ x = -1} \\ f(x)\text{ = 3}^(-1-1)\text{ = 3}^(-2) \\ f(x)\text{ = }(1)/(3^2) \\ f(x)\text{ = }(1)/(9) \end{gathered}
\begin{gathered} when\text{ x = 0} \\ f(x)\text{ = 3}^(0-1)\text{ = 3}^(-1) \\ f(x)\text{ = }(1)/(3^1) \\ f(x)\text{ = }(1)/(3) \\ \\ when\text{ x = 1} \\ f(x)\text{ = 3}^(1-1)\text{ = 3}^0 \\ f(x)\text{ = 1} \end{gathered}
\begin{gathered} when\text{ x = 2} \\ f(x)\text{ = 3}^(2-1)\text{ = 3}^1 \\ f(x)\text{ = 3} \end{gathered}

User Dockstar
by
5.1k points