89.0k views
2 votes
Can you please help me with the cubic root function

Can you please help me with the cubic root function-example-1
User SvenL
by
7.5k points

1 Answer

5 votes

Step-by-step explanation

Domain:


The\: domain\: of\: a\: function\: is\: the\: set\: of\: input\: or\: argument\: values\: for\: which\: the\: function\: is\: real\: and\: defined
\mathrm{The\: function\: has\: no\: undefined\: points\: nor\: domain\: constraints.\: \: Therefore,\: \: the\: domain\: is}
-\infty\: <strong>Range:</strong>[tex]\mathrm{The\: set\: of\: values\: of\: the\: dependent\: variable\: for\: which\: a\: function\: is\: defined}
\mathrm{The\: function\: range\: is\: the\: combined\: domain\: of\: the\: inverse\: functions}
\mathrm{Find\: the\: inverse\: function}\mleft(\mathrm{s}\mright)\mathrm{\: of\colon}\: \sqrt[3]{x}
\mathrm{A\: function\: g\: is\: the\: inverse\: of\: function\: f\: if\: for}\: y=f\mleft(x\mright),\: \: x=g\mleft(y\mright)\:
y=\sqrt[3]{x}

Replace x with y:


x=\sqrt[3]{y}
x^3
Find\: the\: domain\: of\: each\: inverse\: function
\mathrm{Combine\: the\: intervals}
-\infty\: <strong>Even or odd function</strong><strong>:</strong>[tex]\mathrm{Even\: Function\colon\: \: A\: function\: is\: even\: if\: }f\mleft(-x\mright)=f\mleft(x\mright)\mathrm{\: for\: all\: }x\in\mathbb{R}
\mathrm{Odd\: Function\colon\: \: A\: function\: is\: odd\: if\: }f\mleft(-x\mright)=-f\mleft(x\mright)\mathrm{\: for\: all\: }x\in\mathbb{R}

In this case, the function is ODD.

Increasing on:

The function is increasing on the interval 0

User Skulaurun Mrusal
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories