The distance between two points (x1, y1) and (x2, y2) is:
![d=√((x2-x1)^2+(y2-y1)^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zgmdlvr6pcsa6ew389pxm3rhvj825i1l4k.png)
Using the Pythagorean theorem for the right triangle with hypotenuse "h" and sides "a" and "b", we have:
![h^2=a^2+b^2](https://img.qammunity.org/2023/formulas/mathematics/college/csrkkjnil7mls8v3u35payfuggwpegpfsz.png)
To find "h", "a", and "b", we have to find the distance between the points.
Distance between A(8, 1) and B(0, 4):
![\begin{gathered} d_(AB)=√((0-8)^2+(4-1)^2) \\ d_(AB)=√(64+9) \\ d_(AB)=√(73) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ldzeicg246h4xtazkr1bcnuluveqt72005.png)
Distance between A(8, 1) and C(-8, -3):
![\begin{gathered} d_(AC)=√((-8-8)^2+(-3-1)^2) \\ d_(AC)=√(256+16) \\ d_(AC)=√(272) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7yft6s8kfbnh5emoqcd4288roqu7t5l8it.png)
Distance between B(0, 4) and C(-8, -3):
![\begin{gathered} d_(BC)=√((-8-0)^2+(-3-4)^2) \\ d_(AC)=√(64+49) \\ d_(AC)=√(113) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dffj4z8uwfcfhzqfbc6zhotzntpz4mpd1t.png)
Now, let's compare the sides using the Pythagorean theorem. Remember h must be the greatest side.
![\begin{gathered} √(272)^2=√(73)^2+√(113)^2 \\ 272=73+113 \\ 272=186 \\ WRONG \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ikm7nefjclt6dkce9pgnzo76tozv6ugxvm.png)
Since 272 is not equal to 186, the triangle is not a right triangle.
Answer: NO.