Step-by-step explanation
![\mathrm{The\: area\: between\: curves\: is\: the\: area\: between\: a\: curve}\: f\mleft(x\mright)\: \mathrm{and\: a\: curve}\: g\mleft(x\mright)\: \mathrm{on\: an\: interval}\: \mleft[a,\: b\mright]\: \mathrm{given\: by}](https://img.qammunity.org/2023/formulas/mathematics/college/44hsq0fb72ygs2larcfrszhe1o2qloqm9e.png)
We can see that the needed area is defined between x=0 and x=6, and is below the curve y= sin^-1 (x/6)
First, computing the area below the curve y= sin^-1 (x/6):
Applying integration by parts:
![\int \: uv^(\prime)=uv-\int \: u^(\prime)v](https://img.qammunity.org/2023/formulas/mathematics/college/8h1njsss5p9i2zhk1kiq4679gc9udiut0j.png)
![u=\arcsin \mleft((x)/(6)\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/d9ohq9bl3lr5z95zlw55lv8asskihieais.png)
![v^(\prime)=1](https://img.qammunity.org/2023/formulas/mathematics/college/mm6hw7rxq4f01ror6tp5usbgx1akwdfsdj.png)
![(d)/(dx)\mleft(\arcsin \mleft((x)/(6)\mright)\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/827dj9pxfeewne2r1yxvtxr2zyfpf94hbq.png)
Apply the chain rule:
![(df(u))/(dx)=(df)/(du)\cdot(du)/(dx)](https://img.qammunity.org/2023/formulas/mathematics/college/qsx78eaztnhkjo8r7ufx9om2fh27ahze4l.png)
![f=\arcsin \mleft(u\mright),\: \: u=(x)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/rnyhtixomzrnowapkeo2s2owsy7n23bxw1.png)
![=(d)/(du)\mleft(\arcsin \mleft(u\mright)\mright)(d)/(dx)\mleft((x)/(6)\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/8pfhrn569pfveat0wj954wflyjnfdojtdr.png)
![(d)/(du)\mleft(\arcsin \mleft(u\mright)\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/5kjphfxa91k74pxk9awctcfq0cwy5ln7hz.png)
Apply the common derivative:
![(d)/(du)(\arcsin (u))=\frac{1}{\sqrt[]{1-u^2}}](https://img.qammunity.org/2023/formulas/mathematics/college/96azn1y858filoez3gwguniox7vyz2ntdl.png)
![=(1)/(√(1-u^2))](https://img.qammunity.org/2023/formulas/mathematics/college/eoihlqazslexvi1q1vlm8mflvm1vb4sw4z.png)
![=(1)/(√(1-u^2))(d)/(dx)\mleft((x)/(6)\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/pb8a0uv3mxh3mxs5026sc03h3stpt9v1p8.png)
![\mathrm{Substitute\: back}\: u=(x)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/wv81968piq828eocb8jw6m8d2gbzmi8tyz.png)
![=\frac{1}{\sqrt{1-\left((x)/(6)\right)^2}}(d)/(dx)\mleft((x)/(6)\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/8ab6rxxhkcijuxp9t3o68rfzitjw1slfef.png)
Taking the constant out and applying the common derivative:
![=\frac{1}{\sqrt{1-\left((x)/(6)\right)^2}}(d)/(dx)\mleft((x)/(6)\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/8ab6rxxhkcijuxp9t3o68rfzitjw1slfef.png)