74.3k views
5 votes
I must get my math grade up and I need help. Please help me, I am unfamiliar with the material and need explaining/Thanks so much!

I must get my math grade up and I need help. Please help me, I am unfamiliar with-example-1
User Solarflare
by
5.2k points

1 Answer

1 vote

Step-by-step explanation


\mathrm{The\: area\: between\: curves\: is\: the\: area\: between\: a\: curve}\: f\mleft(x\mright)\: \mathrm{and\: a\: curve}\: g\mleft(x\mright)\: \mathrm{on\: an\: interval}\: \mleft[a,\: b\mright]\: \mathrm{given\: by}

We can see that the needed area is defined between x=0 and x=6, and is below the curve y= sin^-1 (x/6)

First, computing the area below the curve y= sin^-1 (x/6):

Applying integration by parts:


\int \: uv^(\prime)=uv-\int \: u^(\prime)v
u=\arcsin \mleft((x)/(6)\mright)
v^(\prime)=1
(d)/(dx)\mleft(\arcsin \mleft((x)/(6)\mright)\mright)

Apply the chain rule:


(df(u))/(dx)=(df)/(du)\cdot(du)/(dx)
f=\arcsin \mleft(u\mright),\: \: u=(x)/(6)
=(d)/(du)\mleft(\arcsin \mleft(u\mright)\mright)(d)/(dx)\mleft((x)/(6)\mright)
(d)/(du)\mleft(\arcsin \mleft(u\mright)\mright)

Apply the common derivative:


(d)/(du)(\arcsin (u))=\frac{1}{\sqrt[]{1-u^2}}
=(1)/(√(1-u^2))
=(1)/(√(1-u^2))(d)/(dx)\mleft((x)/(6)\mright)
\mathrm{Substitute\: back}\: u=(x)/(6)
=\frac{1}{\sqrt{1-\left((x)/(6)\right)^2}}(d)/(dx)\mleft((x)/(6)\mright)

Taking the constant out and applying the common derivative:


=\frac{1}{\sqrt{1-\left((x)/(6)\right)^2}}(d)/(dx)\mleft((x)/(6)\mright)

I must get my math grade up and I need help. Please help me, I am unfamiliar with-example-1
User Steven Musumeche
by
5.3k points