Given:
The force of repulsion between the electrons is,
![F=9.11*10^(-30)\text{ N}](https://img.qammunity.org/2023/formulas/physics/college/n8hca48r0bs75mqvnr8wztdseg9412fjgn.png)
The charge of each electron is,
![e=1.6*10^(-19)\text{ C}](https://img.qammunity.org/2023/formulas/physics/college/hd26c69e4zmxgowocokq9q2ytkn9kqkkly.png)
To find:
The distance between the electrons
Step-by-step explanation:
The force between two electrons at a distance 'r' is,
![\begin{gathered} F=(e^2)/(4\pi\in_0r^2) \\ Here,\text{ }(1)/(4\pi\in_0)=9*10^9\text{ N.m}^2.C^(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/u6me1c2hl2rb22m1n64gf7buzeyq3m3sac.png)
Substituting the values, we get,
![\begin{gathered} 9.11*10^(-30)=9*10^9*((1.6*10^(-19))^2)/(r^2) \\ r^2=((1.6*10^(-19))^2*9*10^9)/(9.11*10^(-30)) \\ r^2=25.29 \\ r=5.03\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/2zseqkh9obrletu9cf37ot5eryr1qkd7zx.png)
Hence, the distance between the electrons is 5.03 m.