To find the derivatives we have to use the following property:
![(d(uv))/(dx)=u^(\prime)v+uv^(\prime)](https://img.qammunity.org/2023/formulas/mathematics/college/grbni53etz7n9z8tr3nza1ih6a5okmrvee.png)
Then the first derivative will be:
![y\text{ = 2xe}^(-x)](https://img.qammunity.org/2023/formulas/mathematics/college/9j5wystzo3qm0mdkiqeyu84mbj08zn17m1.png)
![y^(\prime)\text{ = }2\mleft(e^(-x)-e^(-x)x\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/w32rqkw9qymkfphl7yqbkbhe8t5m1vs7wf.png)
Now to find the second derivative we have to use the same derivative property with the part "-xe^-x. Thus:
![y^(\doubleprime)=2(-2e^(-x)+xe^(-x))](https://img.qammunity.org/2023/formulas/mathematics/college/g6vj02qftdsnriihzttbjmob5fvk09fn8l.png)
Now we have to equal the equation to zero:
![2(-2e^(-x)+xe^(-x))=0](https://img.qammunity.org/2023/formulas/mathematics/college/temt7yo3yrlgpz7g79v6p471oeih0fyj0c.png)
![-2e^(-x)+xe^(-x)=0](https://img.qammunity.org/2023/formulas/mathematics/college/gmcvbz4n7igunx5dgiczsl4v20jd80xboy.png)
![e^(-x)(x-2)=0_{}](https://img.qammunity.org/2023/formulas/mathematics/college/fy4tx1tswfjmbqpse9otild1s39wuwq1hg.png)
The first solution will be:
![e^(-x)=0](https://img.qammunity.org/2023/formulas/mathematics/college/nkxwqih1pth2lnpkvkvc19y11d2glgh4uk.png)
![-x\text{ = ln 0}](https://img.qammunity.org/2023/formulas/mathematics/college/4h925vtnkqkew8n6v9hidqbhsyqma1vh95.png)
ln 0 is undefined, so this answer is impossible.
The second solution will be:
![x-2\text{ = 0}](https://img.qammunity.org/2023/formulas/mathematics/college/mo2903lwovjqj3qfejqnqsg77dnu4bme9w.png)
![x\text{ = 2}](https://img.qammunity.org/2023/formulas/mathematics/college/fh51xchhjzlku8cb60sohh25vu336szktx.png)
Answer: x = 2.