The Equation of a Hyperbola
If the given coordinates of the vertices and foci have the form (0, a) (0, -a), (0,c), and (0,-c) respectively, then the transverse axis is the y-axis.
The equation of this conic can be written in standard form:
![(y^2)/(a^2)-(x^2)/(b^2)=1](https://img.qammunity.org/2023/formulas/mathematics/college/1f10tk7fitbp9701qatu7414w392cxxku8.png)
We are given the values of a=2, c = 5. We can find the value of b with the formula:
![b^2=c^2-a^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/5cw06zwjh1szoeepv4ywr3m2sldt68z3j0.png)
Substituting values:
![\begin{gathered} b=5^2-2^2 \\ \text{Calculating:} \\ b^2=21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zd8pq4hmu1memcmdel6qw34oq3r8ab7u9k.png)
Thus the equation of the hyperbola is:
![(y^2)/(4)-(x^2)/(21)=1](https://img.qammunity.org/2023/formulas/mathematics/college/z13qdmrzwj8k1m67mnpgm9um1g7i4b1lvo.png)
The graph is shown below: