200k views
2 votes
Hello everyone!
Question is in the attachment!
Concept : Straight lines​

Hello everyone! Question is in the attachment! Concept : Straight lines​-example-1
User Key
by
8.0k points

2 Answers

3 votes

Explanation:

hope it helps you

thank you

Hello everyone! Question is in the attachment! Concept : Straight lines​-example-1
Hello everyone! Question is in the attachment! Concept : Straight lines​-example-2
Hello everyone! Question is in the attachment! Concept : Straight lines​-example-3
User Yousaf
by
8.5k points
2 votes

Concept :

- To solve this question we will assume the vertices to be P(3,4) and Q(-2,3) and R(x,y)

- All the sides in an equilateral triangle are equal. Therefore PQ = PR = QR, we will find distance between them by using the distance formula

- Then we will equate PR = QR to form an equation in 2 variables [1] after this we will equate PR = PQ and will substitute the value of y from the above equation [1] to get a quadratic equation in one variable, and will solve it! :D

Distance formula =
\sf \sqrt{ {( x_2 - x_1)}^(2) + {(y_2 - y_1)}^(2)}

Solution :

Let, the coordinates of vertices of the equilateral triangle be P(3,4) and Q(-2,3) and R(x,y)

Also, PQ = PR = QR

Finding PQ using distance formula,


x_(2) = -2


x_(1) = 3


y_(2) = 3


y_(1) = 4

Putting the values,


\begin{gathered} \sf PQ = \sqrt{ {( - 2 - 3)}^(2) + {(3- 4)}^(2)} \end{gathered}


\sf PQ = \sqrt{ {( - 5)}^(2) + {( - 1)}^(2)}


\sf PQ = √( 25 + 1)


\sf PQ = √( 26)

Finding PR using distance formula,


x_(2) = x


x_(1) = 3


y_(2) = y


y_(1) = 4

Putting the values,


\begin{gathered} \sf PR = \sqrt{ {( x - 3)}^(2) + {( y - 4)}^(2)} \end{gathered}

Using (a - b)² = a² + b² - 2ab


\begin{gathered} \sf PR = \sqrt{ {x}^(2) + { (3)}^(2) - 2(x)( 3)+ {y}^(2) + { (4)}^(2) - 2(y)( 4)} \end{gathered}


\begin{gathered} \sf PR = \sqrt{ {x}^(2) + 9 - 6x+ {y}^(2) + 16 - 8y} \end{gathered}


\begin{gathered} \sf PR = \sqrt{ {x}^(2) + {y}^(2) - 6x - 8y + 25} \end{gathered}

Finding QR using distance formula,


x_(2) = x


x_(1) = -2


y_(2) = y


y_(1) = 3


\begin{gathered} \sf QR = \sqrt{ {( x - (- 2))}^(2) + {( y - 3)}^(2)} \end{gathered}


\begin{gathered} \sf QR = \sqrt{ {( x + 2)}^(2) + {( y - 3)}^(2)} \end{gathered}

Using (a - b)² = a² + b² - 2ab and (a + b)² = a² + b² + 2ab


\begin{gathered} \sf QR = \sqrt{ {x}^(2) + {(2)}^(2) + 2(x)(2) + {y}^(2) + {(3)}^(2) - 2(y)(3)} \end{gathered}


\begin{gathered} \sf QR = \sqrt{ {x}^(2) + 4 + 4x + {y}^(2) + 9 - 6y} \end{gathered}


\begin{gathered} \sf QR = \sqrt{ {x}^(2) + {y}^(2) + 4x- 6y + 13} \end{gathered}

Now, PR = QR


\begin{gathered} \sf \sqrt{ {x}^(2) + {y}^(2) - 6x - 8y + 25} = \sqrt{ {x}^(2) + {y}^(2) + 4x- 6y + 13} \end{gathered}

By squaring both sides, the root will get cancel


\begin{gathered} \sf \cancel{ {x}^(2)} + \cancel{{y}^(2) } - 6x - 8y + 25 = \cancel{ {x}^(2)} + \cancel{{y}^(2) } + 4x- 6y + 13 \end{gathered}


\begin{gathered} \sf - 10x - 2y + 12 = 0 \end{gathered}


\begin{gathered} \sf - 5x - y + 6 = 0 \end{gathered}


\begin{gathered} \sf 6 - 5x = y \: \: (1)\end{gathered}

Also PR = PQ


\begin{gathered} \sf \sqrt{ {x}^(2) + {y}^(2) - 6x - 8y + 25} \sf = √( 26)\end{gathered}

By squaring both sides, the root will get cancel


\begin{gathered} \sf {x}^(2) + {y}^(2) - 6x - 8y \sf = 26 - 25\end{gathered}


\begin{gathered} \sf {x}^(2) + {y}^(2) - 6x - 8y \sf = 1\end{gathered}

Put value of y from equation (1)


\begin{gathered} \sf {x}^(2) + { (6 - 5x)}^(2) - 6x - 8( 6 - 5x) \sf = 1\end{gathered}

Using (a - b)² = a² + b² - 2ab


\begin{gathered} \sf {x}^(2) +25 {x}^(2) + 36 - 2(6)(5x) - 6x - 48+ 40x \sf = 1\end{gathered}


\begin{gathered} \sf {x}^(2) +25 {x}^(2) + 36 - 60x - 6x - 48+ 40x \sf = 1\end{gathered}


\begin{gathered} \sf 26 {x}^(2) - 26x - 12 \sf = 1\end{gathered}


\begin{gathered} \sf 26 {x}^(2) - 26x - 13 \sf =0 \end{gathered}


\begin{gathered} \sf 2 {x}^(2) - 2x - 1 \sf =0 \end{gathered}

Using quadratic formula to solve the quartic equation,


\begin{gathered} \sf x = \frac{ - b \pm \sqrt{ {b}^(2) - 4(a)(c)} }{2a} \end{gathered}


\begin{gathered} \sf x = \frac{ - ( - 2) \pm \sqrt{ {( - 2)}^(2) - 4(2)( - 1)} }{4} \end{gathered}


\begin{gathered} \sf x = (2 \pm √( 4 + 8) )/(4) \end{gathered}


\begin{gathered} \sf x = (2 \pm √( 12) )/(4) \end{gathered}


\begin{gathered} \sf x = (2 \pm √( 2 * 2 * 3) )/(4) \end{gathered}


\begin{gathered} \sf x = (2 \pm 2√( 3) )/(4) \end{gathered}


\begin{gathered} \sf x = (2(1 \pm √( 3) ))/(4) \end{gathered}


\begin{gathered} \sf x = (1 \pm √( 3) )/(2) \: \: (2)\end{gathered}

Put value of x in equation (1)


\begin{gathered} \sf 6 - 5((1 \pm √( 3) )/(2)) = y \end{gathered}


\begin{gathered} \sf (12 - 5 ( 1 \pm √( 3)) )/(2) = y \end{gathered}


\sf (7 \mp 5 √( 3) )/(2) = y

The coordinates of third vertex is
\sf ( (1 + √(3) )/(2) ) , ( (7 - 5 √(3) )/(2) ) or
\sf ( (1 - √(3) )/(2) ) , ( (7 + 5 √(3) )/(2) )

Correct Answer is - Option (b)! :)

User Roger Sanders
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories