Concept :
- To solve this question we will assume the vertices to be P(3,4) and Q(-2,3) and R(x,y)
- All the sides in an equilateral triangle are equal. Therefore PQ = PR = QR, we will find distance between them by using the distance formula
- Then we will equate PR = QR to form an equation in 2 variables [1] after this we will equate PR = PQ and will substitute the value of y from the above equation [1] to get a quadratic equation in one variable, and will solve it! :D
Distance formula =
![\sf \sqrt{ {( x_2 - x_1)}^(2) + {(y_2 - y_1)}^(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/jxkwxcj6yzck31by23lp56d1kfzxhp2nz3.png)
Solution :
Let, the coordinates of vertices of the equilateral triangle be P(3,4) and Q(-2,3) and R(x,y)
Also, PQ = PR = QR
Finding PQ using distance formula,
•
= -2
•
= 3
•
= 3
•
= 4
Putting the values,
![\begin{gathered} \sf PQ = \sqrt{ {( - 2 - 3)}^(2) + {(3- 4)}^(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/njm2wva0tgl6oi9be6yvgoaqkvmb2hcemh.png)
![\sf PQ = \sqrt{ {( - 5)}^(2) + {( - 1)}^(2)}](https://img.qammunity.org/2023/formulas/mathematics/college/put4sxue9aii3i1nx518mhvsssw9y7e8js.png)
![\sf PQ = √( 25 + 1)](https://img.qammunity.org/2023/formulas/mathematics/college/vtcss5jgzlkb8261hg2gpt6gupbtfaqq89.png)
![\sf PQ = √( 26)](https://img.qammunity.org/2023/formulas/mathematics/college/us4hisyq4xxa9yxvs3rxcufuvplkb78kb8.png)
Finding PR using distance formula,
•
= x
•
= 3
•
= y
•
= 4
Putting the values,
![\begin{gathered} \sf PR = \sqrt{ {( x - 3)}^(2) + {( y - 4)}^(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w0w7z4ogb9t0g0vbecfb1xsbeuql632gah.png)
Using (a - b)² = a² + b² - 2ab
![\begin{gathered} \sf PR = \sqrt{ {x}^(2) + { (3)}^(2) - 2(x)( 3)+ {y}^(2) + { (4)}^(2) - 2(y)( 4)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c0t9uc6jm2q0c2h1f61c1u5qzz9sjd0l5c.png)
![\begin{gathered} \sf PR = \sqrt{ {x}^(2) + 9 - 6x+ {y}^(2) + 16 - 8y} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d0xbx2u8vp2rm67xynaygcebc0ttcqgzcq.png)
![\begin{gathered} \sf PR = \sqrt{ {x}^(2) + {y}^(2) - 6x - 8y + 25} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pxyqrczmy1bne9t993feh2s2f2l8wcka52.png)
Finding QR using distance formula,
•
= x
•
= -2
•
= y
•
= 3
![\begin{gathered} \sf QR = \sqrt{ {( x - (- 2))}^(2) + {( y - 3)}^(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d2hvxbohgkst1gyl74rs3bgdxn0p4qumrt.png)
![\begin{gathered} \sf QR = \sqrt{ {( x + 2)}^(2) + {( y - 3)}^(2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8ikntq9zrnk9xxel7ivuwxfgo1t5s9247z.png)
Using (a - b)² = a² + b² - 2ab and (a + b)² = a² + b² + 2ab
![\begin{gathered} \sf QR = \sqrt{ {x}^(2) + {(2)}^(2) + 2(x)(2) + {y}^(2) + {(3)}^(2) - 2(y)(3)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r431u9i5qkfie8u0j5f49nnlus2ncyj467.png)
![\begin{gathered} \sf QR = \sqrt{ {x}^(2) + 4 + 4x + {y}^(2) + 9 - 6y} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ouy62te2mqsfzciwmw98udofsg9ry8jbz9.png)
![\begin{gathered} \sf QR = \sqrt{ {x}^(2) + {y}^(2) + 4x- 6y + 13} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8b8g5wbrn13rhv3qbvueh8w3t5ccz4di06.png)
Now, PR = QR
![\begin{gathered} \sf \sqrt{ {x}^(2) + {y}^(2) - 6x - 8y + 25} = \sqrt{ {x}^(2) + {y}^(2) + 4x- 6y + 13} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ry5tusgwy4ctfec6zw5tpsjwy8oybdmp8b.png)
By squaring both sides, the root will get cancel
![\begin{gathered} \sf \cancel{ {x}^(2)} + \cancel{{y}^(2) } - 6x - 8y + 25 = \cancel{ {x}^(2)} + \cancel{{y}^(2) } + 4x- 6y + 13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fz5t9duk6ii32ah76i9vd9d23hd1rywpn5.png)
![\begin{gathered} \sf - 10x - 2y + 12 = 0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nrey837s4a7bcruzzeqjjvs86v8i2e8jke.png)
![\begin{gathered} \sf - 5x - y + 6 = 0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tgw5ye63f2e87i4dhio9ppdwbtmu7whgvw.png)
![\begin{gathered} \sf 6 - 5x = y \: \: (1)\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1w68mpe1ccuuaow3desjteg3hmaknhan68.png)
Also PR = PQ
![\begin{gathered} \sf \sqrt{ {x}^(2) + {y}^(2) - 6x - 8y + 25} \sf = √( 26)\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m1nzpkp18at4sei9dcc2z9ah40wzd91hjp.png)
By squaring both sides, the root will get cancel
![\begin{gathered} \sf {x}^(2) + {y}^(2) - 6x - 8y \sf = 26 - 25\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b2wssadmjad1b0tpwx5zk0pbmarkss67we.png)
![\begin{gathered} \sf {x}^(2) + {y}^(2) - 6x - 8y \sf = 1\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hirc46xtamclu9hh6vny3ktonqzwy0pxve.png)
Put value of y from equation (1)
![\begin{gathered} \sf {x}^(2) + { (6 - 5x)}^(2) - 6x - 8( 6 - 5x) \sf = 1\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/liwpy6p9i3am9m76mqrb1bm6b5ov4zhu69.png)
Using (a - b)² = a² + b² - 2ab
![\begin{gathered} \sf {x}^(2) +25 {x}^(2) + 36 - 2(6)(5x) - 6x - 48+ 40x \sf = 1\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ym9l65z47iajdsjv3fb8qezi8yj9oy267t.png)
![\begin{gathered} \sf {x}^(2) +25 {x}^(2) + 36 - 60x - 6x - 48+ 40x \sf = 1\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xfoscssjwxtm7r10i0hhepofkssoqz6ltq.png)
![\begin{gathered} \sf 26 {x}^(2) - 26x - 12 \sf = 1\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s3fulgfsj8710qtctidze8u52okl7v8je1.png)
![\begin{gathered} \sf 26 {x}^(2) - 26x - 13 \sf =0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gl0x0kit1b98658zz0vb13ngm3a2zqxyx3.png)
![\begin{gathered} \sf 2 {x}^(2) - 2x - 1 \sf =0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mow3pkzi2mw9hkp5upwxs7wi63n57hqxth.png)
Using quadratic formula to solve the quartic equation,
![\begin{gathered} \sf x = \frac{ - b \pm \sqrt{ {b}^(2) - 4(a)(c)} }{2a} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wg1a7lhd65ya0s8dcblu7a8b0ehg1e43xe.png)
![\begin{gathered} \sf x = \frac{ - ( - 2) \pm \sqrt{ {( - 2)}^(2) - 4(2)( - 1)} }{4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9mlo4fg8fcs45c0b693sktg5k1afw7nt0y.png)
![\begin{gathered} \sf x = (2 \pm √( 4 + 8) )/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y2301q40pjwmobgs1n31hsojflxnx5rdx4.png)
![\begin{gathered} \sf x = (2 \pm √( 12) )/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ctluouq940o6hv0k8u4pepj340l4hvxejl.png)
![\begin{gathered} \sf x = (2 \pm √( 2 * 2 * 3) )/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hn04zzebf28gyf8vo6we7pgtnu337mzno3.png)
![\begin{gathered} \sf x = (2 \pm 2√( 3) )/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gcu7tv7khdz0z389qv5zb64x6etlpflwb6.png)
![\begin{gathered} \sf x = (2(1 \pm √( 3) ))/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2vfz0r79478182wij2753ba5rbf2cwbcpr.png)
![\begin{gathered} \sf x = (1 \pm √( 3) )/(2) \: \: (2)\end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lt3y3cxh8orfv3wnqmqc17qvlzjoe268wf.png)
Put value of x in equation (1)
![\begin{gathered} \sf 6 - 5((1 \pm √( 3) )/(2)) = y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2zwtunzpl0kj17vgcosbbiccfqzm5631ty.png)
![\begin{gathered} \sf (12 - 5 ( 1 \pm √( 3)) )/(2) = y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cj47b5x7d71ppkbg13wniquhwpo83ozg55.png)
![\sf (7 \mp 5 √( 3) )/(2) = y](https://img.qammunity.org/2023/formulas/mathematics/college/runjmt5gcxjv185nrto047g87n2m0fs1qg.png)
The coordinates of third vertex is
or
![\sf ( (1 - √(3) )/(2) ) , ( (7 + 5 √(3) )/(2) )](https://img.qammunity.org/2023/formulas/mathematics/college/e21hlahqqh6ba3kkp2zb7xk3di12aqhf29.png)
Correct Answer is - Option (b)! :)