The Solution:
Given the equation that modeled the population of fish after time (t) in years as below:
![p(t)=(1250)/(2+3e^(-0.6t))](https://img.qammunity.org/2023/formulas/mathematics/high-school/xs8saq4hcggsjz8s7ju5hwwkb4yuqp19zd.png)
part 1:
We are to find the initial population of fish. This means we are to find the value of p when t = 0.
![p(0)=(1250)/(2+3e^(-0.6(0)))=(1250)/(2+3e^0)=(1250)/(2+3)=(1250)/(5)=250\text{ fish}](https://img.qammunity.org/2023/formulas/mathematics/high-school/eiz5ygz51ke72yqksp1cctib9v045stshc.png)
Part 2:
We are required to find the doubling time (t) for this population (Round the answer to the nearest tenth). This means we are to find t when P(t) = 500.
Note: double of 250 fish is 2x250 = 500 fish.
![\begin{gathered} p(t)=(1250)/(2+3e^(-0.6t)) \\ \\ \text{Where P(t)=500, and t=?} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hqxel2n9nf4rpn39xnvbe4xsiy9arfjgd3.png)
![\begin{gathered} 500=(1250)/(2+3e^(-0.6t)) \\ \text{Cross multiplying, we get} \\ \\ 500(2+3e^(-0.6t))=1250 \\ \text{ Dividing both sides by 500, we get} \\ \\ (500(2+3e^(-0.6t)))/(500)=(1250)/(500) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/z4f91o96sd7vrneiazn1c1rmcq3pz4xha1.png)
![\begin{gathered} 2+3e^(-0.6t)=2.5 \\ \text{ Collecting the like terms, we get} \\ 3e^(-0.6t)=2.5-2 \\ 3e^(-0.6t)=0.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7cj0b3948g9xbfjdj0nckr4a44pd862c9l.png)
Dividing both sides by 3, we get
![\begin{gathered} (3e)/(3)^(-0.6t)=(0.5)/(3) \\ \\ e^(-0.6t)=(1)/(6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/otca7ivoavfqprvly4qbtd86xd13oy9pom.png)
Taking the natural log of both sides, we get
![undefined]()