![(x)/(x+4)+(3)/(x+5)=(x+2)/(x^2+9x+20)](https://img.qammunity.org/2023/formulas/mathematics/college/tcbx7h4umlnduis0o9ixgjulc0khi92zn0.png)
1. Factor the denominator of the expression on the irhgt of the equation:
- Write 9x as the sum of two terms that when you muliply the coefficient the result is 20:
![x^2+9x+20=x^2+5x+4x+20](https://img.qammunity.org/2023/formulas/mathematics/college/gr2ogtv5x8s16j790ysl33cumkq7wafukf.png)
-Factor by parts: (common factor in frist two terms x and common factor in last two terms 4)
![=x(x+5)+4(x+5)](https://img.qammunity.org/2023/formulas/mathematics/college/hq76jsd5t78lxcvmuw0eotu5w5ntsa2t0z.png)
-Factor (x+5)
![=(x+5)(x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/3ucugk3kunh7q62k9elljkn4v0q6vz2rfz.png)
Then, the given equation after the frist step is:
![(x)/(x+4)+(3)/(x+5)=(x+2)/((x+5)(x+4))](https://img.qammunity.org/2023/formulas/mathematics/college/pavi68temo1xur5s9c546q2se0s7jktgu2.png)
2. Subtract the fraction on the right in both sides of the equation:
![\begin{gathered} (x)/(x+4)+(3)/(x+5)-(x+2)/((x+5)(x+4))=(x+2)/((x+5)(x+4))-(x+2)/((x+5)(x+4)) \\ \\ (x)/(x+4)+(3)/(x+5)-(x+2)/((x+5)(x+4))=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cq0rr1h5flqpi0d70k37h1au5xhw99ottp.png)
3. Write each fraction with LCD (x+5)(x+4)
-First fraction: multiply numerator and denominator by (x+5):
![(x)/(x+4)\cdot(x+5)/(x+5)=(x(x+5))/((x+5)(x+4))](https://img.qammunity.org/2023/formulas/mathematics/college/1g02d5ey8qcgmxmij0e15erumc47z5bmp6.png)
-Second fraction: multiply numerator and denominator by (x+4)
![(3)/(x+5)\cdot(x+4)/(x+4)=(3(x+4))/((x+5)(x+4))](https://img.qammunity.org/2023/formulas/mathematics/college/pkwly3q8zzda58bazbvrdupm849b40x7h3.png)
-Third fraction is written with the LCD.
Then, the expression written with LCD is:
![(x(x+5))/((x+5)(x+4))+(3(x+4))/((x+5)(x+4))-(x+2)/((x+5)(x+4))=0](https://img.qammunity.org/2023/formulas/mathematics/college/xtq5vm5epsrnl99ws57zjhpsongaxjqhoc.png)
4. Solve the operartions of the fractions:
![(x(x+5)+3(x+4)-(x+2))/((x+5)(x+4))=0](https://img.qammunity.org/2023/formulas/mathematics/college/2l5ix8ltpg3k37gz3jwq8ye3uwhsl0h5v3.png)
Simplify:
![\begin{gathered} (x^2+5x+3x+12-x-2)/((x+5)(x+4))=0 \\ \\ (x^2+7x+10)/((x+5)(x+4))=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2jwumja21e03l6j2lcob6hy5s1392dte9d.png)
5. Factor the numerator:
-Write 7x as the sum of two terms that when you muliply the coefficient the result is 10:
![x^2+7x+10=x^2+5x+2x+10](https://img.qammunity.org/2023/formulas/mathematics/college/xq0yvg7divbsr6f0fhijilny2p0p3n9sd9.png)
-Factor by parts: (comon term in frist two terms is x, and comon factor in last two temrs is 2):
![=x(x+5)+2(x+5)](https://img.qammunity.org/2023/formulas/mathematics/college/ox5htqfdxejral93sqeqbuahezj3opvov4.png)
-Factor (x+5):
![=(x+5)(x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/pnqbhuztczzg8l4follliqwfp361ibj1i3.png)
Then, the equation after this step is:
![((x+5)(x+2))/((x+5)(x+4))=0](https://img.qammunity.org/2023/formulas/mathematics/college/9h1zd594f5wk0rjytm87imrbarrd6xjo70.png)
6. Simplify:
![(x+2)/(x+4)=0](https://img.qammunity.org/2023/formulas/mathematics/college/9w9txlgv7fxq0dsxuw8fhoq2g213w3t7f9.png)
7. Solve x:
When the quotient (result of division) is equal to 0, the numerator is equal to 0:
![\begin{gathered} x+2=0 \\ \\ \text{Subtract 2 in both sides of the equation:} \\ x+2-2=0-2 \\ x=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vpt915eki7dyv5tia4b761wf5dxi3ci22x.png)
Then, the solution for the given eqution is: x= -2