We have a geometric sequence, with a(2) = 5 and r = -2.
We can write geometric sequences in general as:
![\mleft\lbrace a,a\cdot r,a\cdot r^2,a\cdot r^3,\ldots,a\cdot r^(n+1),\ldots\mright\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/2i6egksmb392y6x4ug6wcj8e0qba6mxu6k.png)
So we can write the second term, a(2), as:
![a(2)=a\cdot r](https://img.qammunity.org/2023/formulas/mathematics/college/ktc6wfriyi6iubaw2478eb9d98tp6jdtsr.png)
As we know a(2) and r, we can calculate the base "a" as:
![a=(a(2))/(r)=(5)/(-2)=-(5)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/t99uqxudjlzp4gvr247uqqfdxka4f60y7b.png)
Any term can be calculated as:
![a(n)=a\cdot r^(n-1)=(-(5)/(2))\cdot(-2)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/d8tro3gdzw7u72qhlqasjj5l80tm6i7td5.png)
Then, the eight term a(8) can be then calculated as:
![a(8)=(-(5)/(2))\cdot(-2)^(8-1)=(-(5)/(2))\cdot(-2)^7=(-(5)/(2))\cdot(-128)=320](https://img.qammunity.org/2023/formulas/mathematics/college/xzh505g97z0mkh8yp7if4krkygb894rhdb.png)
Answer: a(8) = 320