Answer:
Explanation:
Given equation:
- x² + y² + 8x - 4y - 7 = 0
Convert this to standard form by completing the square:
- (x - h)² + (y - k)² = r², where (h, k) - center, r - radius
- x² + 2*4x + 4² + y² - 2*2y + 2² - 16 - 4 - 7 = 0
- (x + 4)² + (y - 2)² - 27 = 0
- (x + 4)² + (y - 2)² = 27
- (x + 4)² + (y - 2)² = (√27)²
The center is (- 4, 2) and the radius is √27