47.1k views
5 votes
A military drone can fly at 5 miles per hour in calm conditions. For one flight, the drone flew 21 miles with the wind and 9 miles against the wind in the same amount of time. What was the wind speed for the flight? (Do not include the units in your response.)

User Jspboix
by
4.9k points

1 Answer

4 votes

\begin{gathered} v=\text{spe}ed\text{ of the dron= 5 miles/hour} \\ v_w\text{ = wind sp}eed \\ \text{With the wind} \\ x1=21\text{ miles},\text{ v}1=v+v_w\text{ } \\ \text{againt the wind} \\ x2=9\text{ miles},\text{ v2=}v-v_w\text{ } \\ v=(x)/(t) \\ \text{Solving t} \\ t=(x)/(v) \\ \text{But the time is equal in both cases} \\ t1=t2 \\ (x1)/(v1)=(x2)/(v2) \\ \\ \frac{x1}{v+v_w\text{ }}=\frac{x2}{v-v_w\text{ }} \\ Solv\text{ing }v_w \\ x1(v-v_w)=x2(v+v_w) \\ x1v-x1v_w=x2v+x2v_w \\ x1v-x2v=x2v_w+x1v_w \\ v(x1-x2)=v_w(x2+x1) \\ v_w=(v(x1-x2))/((x2+x1)) \\ U\sin g\text{ the values} \\ v_w=\frac{(\text{5 miles/hour})(21\text{ miles}-9\text{ miles})}{(9\text{ miles}+21\text{ miles})} \\ \\ v_w=2\text{ miles/hour} \\ \text{The wind sp}eed\text{ is }2\text{ miles/hour} \end{gathered}

User Mohammad Zeeshan
by
4.3k points