The probablity that first one selected is a criminal justice major is,
![P_1=(23)/(142)](https://img.qammunity.org/2023/formulas/mathematics/college/p3f3190xr5rm8tu7fntv5qrip4991t13nl.png)
Now, the probablity that second one is a criminal justice major is when selected without replacement,
![P_2=(22)/(141)](https://img.qammunity.org/2023/formulas/mathematics/college/o8uhan7og1tywozknzh6z14xhhvy5vfc2f.png)
Simirally,
![\begin{gathered} P_3=(21)/(140) \\ P_4=(20)/(139) \\ \ldots.\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/553ur963iu3x5cxzcq4qds7utgxi2ujfnv.png)
Thus, using the multiplication theorem,
![\begin{gathered} P=P_1* P_2*\ldots\ldots.P_9 \\ =(23)/(142)*(22)/(141)*(21)/(140)*\ldots\ldots\ldots\ldots\ldots(15)/(134) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zlqzinatzjkp0mecfl3wcwlls7bmzkibt7.png)
Thus, the above equation gives the requried probablity.