116k views
2 votes
Factor 36(a^2 - b^3)^4 - 18(a^2 - b^3)^7

1 Answer

0 votes

Solution

We are required to factorize


36(a^2-b^3)^4-18(a^2-b^3)^7
=18(a^2-b^3)^4\text{ is a common factor}
\begin{gathered} Thus,\text{ we have } \\ =18(a^2-b^3)^4(2-(a^2-b^3)^3) \end{gathered}
\begin{gathered} Expand\text{ \lparen2-\lparen a}^2-b^2))^3 \\ =(2-a^6+3a^4b^3-3a^2b^6+b^9) \end{gathered}

Thus, the answer is

Factor 36(a^2 - b^3)^4 - 18(a^2 - b^3)^7-example-1
User JGeer
by
4.8k points