Recall that the area of a sector of a circle of radius r formed by the central angle θ radians is:
![A=(\theta)/(2)r^2\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/ut7cg4ey8irxdnhh8sh2h35m30xlfgrx11.png)
Substituting θ=π/4, and A=84m² we get:
![84m^2=((\pi)/(4))/(2)r^2\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/szw9osyc2q8q9cwiw5uddpu5604w6c6egn.png)
Simplifying the above result we get:
![84m^2=(\pi)/(8)r^2.](https://img.qammunity.org/2023/formulas/mathematics/college/z681m8pqsxgq2zaw5erdcep1oin9bx3te8.png)
Multiplying the above equation by 8/π we get:
![\begin{gathered} 84m^2*(8)/(\pi)=(\pi)/(8)r^2*(8)/(\pi), \\ r^2=(672)/(\pi)m^2\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/59t2k2c0p6ohcpy82fz41i2u625oiz8ogx.png)
Therefore:
![\begin{gathered} r=\sqrt[]{(672)/(\pi)}m \\ \approx14.63m \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bf2hz8thjgqtdusibww4ztwlwytsvvsfyn.png)
Answer: Third option, 14.63m.