To find the measure of an angle knowing the coordinates of the endpoint (x,y) you use the next:
![b-y_0=r\sin \theta](https://img.qammunity.org/2023/formulas/mathematics/college/g9mev8apmuk7e4i2pigmri9rlhdgdtoqr5.png)
Solve the equation to θ
![\begin{gathered} (b-y_0)/(r)=\sin \theta \\ \\ \sin ^(-1)((b-y_0)/(r))=\theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o2or3wyysufdn7osrumgmb507j1650mlw6.png)
b is the coordinate in y of endpoint
y0 is the coordinate in y where is the center of the angle
r is the radius of the circle
-------------------------------------------
In this case for θ1: Endpoint B (3.05, 1.91)
b= 1.91
y0= 0 (angle in in (0,0)
r= 3.6 (The distance from the origin to point A in x is equal to the radius)
![\begin{gathered} \theta_1=sin^(-1)((1.91-0)/(3.6)) \\ \\ \theta_2=32.04º=0.55\text{rad} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4zjruu43u1j9064qpme3jsese9987vwjcs.png)
The radian measure of ∠AOB is 0.55. θ1 =0.55rad
-----------------------------
As you know the length of the arc BC (13.824 units long) you use the next equation to find the measure of the angle)
![S=r\cdot\theta](https://img.qammunity.org/2023/formulas/mathematics/college/gxu2xqay74czilwbqkyjo0n854kwpihhue.png)
Solve the equation for θ:
![\theta=(S)/(r)](https://img.qammunity.org/2023/formulas/mathematics/college/auuyqb8uofwppf3vnx0ragk8o40wy63ssv.png)
S is the length of the arc
r is the radius
In this case for θ2:
S= 13.824 units
r= 3.6
![\begin{gathered} \theta_2=(13.824)/(3.6) \\ \\ \theta_2=3.84\text{rad} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o6l0k20tneo1vohi7yu4o7jhvk05clmsiy.png)
The radian measure of ∠BOC is 3.84. θ2=3.84rad
---------------------------------
To find the coordinates of point C you add angles θ1 and θ2:
![\theta_1+\theta_2=0.55rad+3.84rad=4.39\text{rad}](https://img.qammunity.org/2023/formulas/mathematics/college/m864k34thza12oruu6fm9hy8jzvydgke2p.png)
Use the next formulas to find coordinates of a endpoint with center of angle in (0,0):
![\begin{gathered} x=r\cdot\cos \theta \\ y=r\cdot\sin \theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5td669xfgkgw7at76l31elzlkokjbodgec.png)
In this case for point C:
θ = 4.39rad
r= 3.6
![\begin{gathered} x=3.6\cdot\cos 4.39\text{rad} \\ x=-1.140 \\ \\ y=3.6\cdot\sin 4.39\text{rad} \\ y=-3.41 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8xgtb1sj2o6ur7vrylwz6jsfmt94k3jhwy.png)
The coordinates of point C are (-1.140 , -3.41)x= -1.140y= -3.41