ANSWER :
First sum : -14,625
Second sum : 11,390
EXPLANATION :
The sum formula of an arithmetic series is :
![S_n=(n)/(2)(a_1+a_n)](https://img.qammunity.org/2023/formulas/mathematics/college/l34sdkbt2duk3wd7n1oiycdrw18fbr7kew.png)
where Sn = sum
n = number of terms
a1 = first term
an = last term
From the problem, we have the series :
![5+0+(-5)+...+(-380)](https://img.qammunity.org/2023/formulas/mathematics/college/ixtxr9m5m2zg8ny8mvqwt9lzdhzps5e7ja.png)
We have the first term, a1 = 5 and the last term, an = -380.
But we don't know the number of terms.
Using the nth term formula of an arithmetic series.
![a_n=a_1+d(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/z9jyjzs3gtye2ac99tljhz0dstsxu67bsc.png)
The difference in the series is 0 - 5 = -5
Let's solve for the value of n :
![\begin{gathered} a_(n)=a_(1)+d(n-1) \\ -380=5-5(n-1) \\ -380-5=-5(n-1) \\ -385=-5(n-1) \\ (-385)/(-5)=n-1 \\ 77=n-1 \\ 77+1=n \\ n=78 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/62ifjh6d96vgztwl394fcuoq7b5udx65b8.png)
So there are 78 terms.
Now use the sum formula :
![\begin{gathered} S_n=(78)/(2)(5-380) \\ S_n=-14625 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z7xyktnetrr6ayok0a00s2hxm8f8dwtcgw.png)
The sum is -14,625
For the second sum, we have :
![\sum_{n\mathop{=}1}^(85)(3j+5)](https://img.qammunity.org/2023/formulas/mathematics/college/vq0odivstrab6h4y4oc8sm3zg73cxn30pc.png)
The first term will be :
![3(1)+5=8](https://img.qammunity.org/2023/formulas/mathematics/college/bhu9c0z302xt3o6oquclv033iln33h0yuc.png)
Solve for the last term at j = 85
![3(85)+5=260](https://img.qammunity.org/2023/formulas/mathematics/college/nr030iuh58qcbg6ype5az5bqtfwmx9qqsh.png)
To summarized, we have :
a1 = 8
an = 260
n = 85
Using the sum formula above :
![\begin{gathered} S_n=(85)/(2)(8+260) \\ S_n=11390 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bcjn7zo4wiypq1nwjjwnjtyd5ckhtmd8qd.png)
The sum is 11,390