Answer:
![\theta=\text{ 145.3\degree}](https://img.qammunity.org/2023/formulas/mathematics/college/40kap344kr5x14fjy3m4dwgjnr53946h30.png)
Explanation:
The angle between two vectors is represented by the following equation:
![\cos \theta=\frac{\vec{u}\cdot\vec{v}}{\lvert\vec{u}\rvert\lvert\vec{v}\rvert}](https://img.qammunity.org/2023/formulas/mathematics/college/ze4kuqd8mc8kylqunl215m0lgveqip7kwv.png)
Notice that it involves a trigonometric function, the dot product of two vectors, and the magnitude of two vectors.
Then, let's determine the dot product of the two vectors:
![\begin{gathered} \vec{v}\cdot\vec{w}=-4\cdot2+-3\cdot6 \\ \vec{v}\cdot\vec{w}=-26 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lsoib5ktcuhnsp3odtee0hvs240s8706ih.png)
Now, calculate the magnitudes of the vectors:
![\begin{gathered} \lvert\vec{v}\rvert=\sqrt[]{(-4)^2+(-3)^2}=5 \\ \lvert\vec{w}\rvert=\sqrt[]{(2)^2+(6)^2}=2\sqrt[]{10} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4irxub2ilala1mrheoi78amzbptwywsv0r.png)
Now, substitute into the equation to find the angle:
![\begin{gathered} \cos \theta=\frac{-26}{5\cdot2\sqrt[]{10}} \\ \theta=\cos ^(-1)(\frac{-26}{5\cdot2\sqrt[]{10}}) \\ \theta=\text{ 145.3\degree} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jboe55zdk3juaus6crmjv9nsnant6ru628.png)