In an isosceles triangle, there's a pair of congruent angles. Let's call x each of these congruent angles.
Since one angle is 18 degrees greater than each of the other two equal angles, this third angle is given by:
x + 18º
Now, we need to use the property that the three internal angles in a triangle must sum up to 180º. Then, we have:
x + x + (x + 18º) = 180º
Then, solving this equation, we find:
x + x + (x + 18º) = 180º
3x + 18º = 180º
3x + 18º - 18º = 180º - 18º
3x = 162º
3x/3 = 162º/3
x = 54º
And the third angle is
x + 18º = 54º + 18º = 72º
Therefore, the angles are:
54º, 54º, and 72º