Answer:
Concept:
To figure out the equation of the graph, we will use the image below and bring out the two intercepts
The two intercepts from the graph are
![\begin{gathered} (x_1,y_1)\Rightarrow(8,0) \\ (x_2,y_2)\Rightarrow(0,-4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wrniwe96o4wazma569lzlnlqsiubpc5yk0.png)
To figure out the equation of the line, we will use the formula below
![\begin{gathered} (y_2-y_1)/(x_2-x_1)=(y-y_1)/(x-x_1) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bwbivo89p6vdzs1xyh1424em1u6x9otb9e.png)
By substituting the values, we will have
![\begin{gathered} (y_(2)-y_(1))/(x_(2)-x_(1))=(y-y_(1))/(x-x_(1)) \\ (-4-0)/(0-8)=(y-0)/(x-8) \\ (-4)/(-8)=(y)/(x-8) \\ (1)/(2)=(y)/(x-8) \\ cross\text{ multiply, we will have} \\ 2y=1(x-8) \\ 2y=x-8 \\ divdie\text{ all through by 2} \\ (2y)/(2)=(x)/(2)-(8)/(2) \\ y=(1)/(2)x-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fhqq0g2q0e5kfkk0k6wsdcj1ekx6q6wj72.png)
Graphically, we will have
Hence,
The final answer is
![\Rightarrow f(x)=(1)/(2)x-4](https://img.qammunity.org/2023/formulas/mathematics/college/1dhptgmsrig3m14qxf14o5g9jsqzlnpol8.png)
OPTION A is the right answer