Answer:
![\text{Total= \$43.5}](https://img.qammunity.org/2023/formulas/mathematics/college/9wu0ikgwtr78sqn8sayu7jc392tjmh7bjn.png)
Step by step explanation:
To solve this situation we can create a system of linear equations, with the given information for the customers:
Let x be the price for each hamburger
Let y be the price for each drink
![\begin{gathered} 2x+4y=13\text{ (1)} \\ 3x+7y=21\text{ (2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/teqfsmapyqst463s89xbiteb34bsiln3tp.png)
To solve for x and y. We can use the substitution method, which consists of isolating one variable in one of the equations and substitute it into the other.
Let's isolate y in (1):
![\begin{gathered} 4y=13-2x \\ y=(13)/(4)-(2)/(4)x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dhvi6h9h4ihb84v0fyhdactjpqfu0jcp7d.png)
Now, substitute it into equation (2).
![3x+7((13)/(4)-(2)/(4)x)=21](https://img.qammunity.org/2023/formulas/mathematics/college/h4neosgkmswnncbj4mz6rw98l6n4ua65z9.png)
Solve for x:
![\begin{gathered} 3x+(91)/(4)-(7)/(2)x=21 \\ -(1)/(2)x+(91)/(4)=21 \\ -(1)/(2)x=21-(91)/(4) \\ -(1)/(2)x=-(7)/(4) \\ x=(7\cdot2)/(4) \\ x=(7)/(2)=\text{ \$3.5 } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3sdufhjcfi7figrrivu51tsgjalum3dvr2.png)
With the x-value, we can substitute it into the equation (1) to find the price for each drink:
![\begin{gathered} y=(13)/(4)-(2)/(4)(3.5) \\ y=(13)/(4)-(7)/(4) \\ y=(6)/(4)=\text{ \$1.5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ruambgiayu7hl4ypj4z6za6cr95uc71opy.png)
Therefore, the price for each hamburger is $3.5 and for each drink is $1.5.
Now, if we want to buy 8 drinks and 9 hamburgers:
![\begin{gathered} \text{Total}=(8\cdot1.5)+(9\cdot3.5) \\ \text{Total}=12+31.5 \\ \text{Total= \$43.5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3590e7dfqob6eylquh0zbyhqhg8l7ag8n1.png)