ANSWER
![\begin{gathered} V(t)=\text{ 28,600\lparen0.986\rparen}^t \\ V(8)\text{ = \$25,548.38} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rwplinobi0o4tlu6k9o7ez7go8qv0xjb20.png)
Step-by-step explanation
Given:
The price of a car in 2010 = $28,600
The cost of depreciation per year = $400
Desired Outcome:
1. V(t)
2. V(8)
Determine the depreciation rate
![\begin{gathered} rate\text{ = }(400)/(28600) \\ rate\text{ = 0.013986} \\ rate\text{ = 1.3986\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6k1x89dpurbedjh2uhsi1oqegy4yvl0qga.png)
Applying the formula for decay
![V\text{ = A\lparen1-r\rparen}^n](https://img.qammunity.org/2023/formulas/mathematics/college/ay5a8jp8nzv8fy4wq6jycmntmtvwc6aps8.png)
where
A = initial cost price
r = depreciation rate
n = number of years
So the formula for V(t)
![\begin{gathered} V(t)\text{ = 28,600\lparen1 - 0.013986\rparen}^t \\ V(t)\text{ = 28.600\lparen0.986\rparen}^t \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zxcsfhw646k6ch0q2sv6gdcep30lcgre99.png)
The value of the in 2018
![\begin{gathered} V(8)\text{ = 28,600\lparen0.986\rparen}^8 \\ V(8)\text{ = 28,600\lparen0.8933\rparen} \\ V(8)\text{ = 25,548.38} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oelwh0zi6ah3dae8a5et54lw2o71cdsoq9.png)
Hence, the formula for V(t) is 28,600(0.986)^t and the value of the car in 2018 is $25,548.38