221k views
0 votes
I’m just wanting to know how to get to the answers to these questions

I’m just wanting to know how to get to the answers to these questions-example-1

1 Answer

1 vote

Given:


f(x)=(5)/(x),x_0=1,x_n=9

Step-by-step explanation:

To find: The area when n = 2 (since, 2 rectangles)

Finding the given change in x,


\begin{gathered} \Delta x=(b-a)/(n) \\ =(9-1)/(2) \\ =4 \end{gathered}

Defining the partition intervals,


x:\lbrace(1,5),(5,9)\rbrace

Choose the midpoint in each interval,


x_m=\lbrace3,7\rbrace

Finding the value of the function at the point,


\begin{gathered} f(3)=(5)/(3) \\ f(3)\approx1.6667 \\ f(7)=(5)/(7) \\ f(7)\approx0.7143 \end{gathered}

Using the midpoint formula,


\begin{gathered} A=\Delta x(f(x_(m_1))+f(x_(m_2))) \\ =4(1.6667+0.7143) \\ A\approx9.5238\text{ square units} \end{gathered}

Final answer: The area under 2 rectangles is 9.5238 square units.

To find: The area when n = 4 (4 rectangles)

Finding the given change in x,


\begin{gathered} \Delta x=(b-a)/(n) \\ =(9-1)/(4) \\ =2 \end{gathered}

Defining the partition intervals,


x:\lbrace(1,3),(3,5),(5,7),(5,9)\rbrace

Choose the midpoint in each interval,


x_m=\lbrace2,4,6,8\rbrace

Finding the value of the function at the point,


\begin{gathered} f(2)=(5)/(2)\Rightarrow f\mleft(2\mright)=2.5 \\ f(4)=(5)/(4)\Rightarrow f\mleft(4\mright)=1.25 \\ f(6)=(5)/(6)\operatorname{\Rightarrow}f(6)=0.8333 \\ f(8=(5)/(8)\operatorname{\Rightarrow}f(8)=0.625 \end{gathered}

Using the midpoint formula,


\begin{gathered} A=\Delta x(f(x_(m_1))+f(x_(m_2))+f(x_(m_3))+f(x_(m_4))) \\ =2(2.5+1.25+0.833+0.625) \\ =2(5.2083) \\ A\approx10.4167\text{ square units} \end{gathered}

Final answer: The area under 4 rectangles is 10.4167 square units.

User Hahnemann
by
4.7k points