74.5k views
4 votes
Given h(x)= x² and g(x)
√(x - 2)= x-2 evaluate: (a) h(g(18)) (b) g(h(4)) (c) (g•g)(11) (d) h(h(0)) (e) (hog)(38) () (g•h)(0)

1 Answer

7 votes

h(x)=x^2+11
g(x)=\sqrt[]{x-2}
a)h(g(18))

first we have to do g(18), then evaluate the number that we get in h


\sqrt[]{18-2}=\sqrt[]{16}=4
x^2+11=4^2+11=16+11=27

so the a is 27


b)g(h(4))
x^2+11=4^2+11=16+11=27
\sqrt[]{27-2}=\sqrt[]{25}=5

the b is 5


c)(g\circ g)(11)
\sqrt[]{11-2}=\sqrt[]{9}=3
\sqrt[]{3-2}=\sqrt[]{1}=1

the c is 1


d)h(h(0))
x^2+11=0+11=11
11^2+11=121+11=132

the d is 132


e)(h\circ g)(38)
\sqrt[]{38-2}=\sqrt[]{36}=6
6^2+11=36+11=47

the e is 47


f)(g\circ h)(0)
x^2+11=0^2+11=11
\sqrt[]{11-2}=\sqrt[]{9}=3

the f is 3

User Kleptine
by
4.8k points