![4.012(gr)/(cm^3)](https://img.qammunity.org/2023/formulas/physics/college/jinmguzmjnzfm6wfb3qvgtnffcqm3915kt.png)
Step-by-step explanation
the density of an object is given by:
![\text{Density(d)}=\frac{mass(m)}{\text{volume(v)}}](https://img.qammunity.org/2023/formulas/physics/college/5z53ppdsd84edxh6quxmh07uv3pnxywk66.png)
Step 1
find the volume of the bar
a)find the volume of the rectangular bar.
the volume of a rectangular prism is given by:
![\text{Volume}=\text{ length}\cdot widht\cdot depth](https://img.qammunity.org/2023/formulas/physics/college/zvdemalwclmby7xav2p356bzpwn5r2s75k.png)
replace
![\begin{gathered} \text{Volume}=(\text{ 2.63}\cdot2.19\cdot1.96)(cm^3) \\ \text{Volume}=11.289012(cm^3) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9kf8o8fpkh6sqdzm8oeg4xn3hbdu8u0jej.png)
Step 2
now,
Let
![\begin{gathered} \text{Volume}=11.289012(cm^3) \\ \text{mass}=\text{ 45.3 gr} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/jg61tdbdn3e2q7kiswpndvv722cp3eh88v.png)
replace in the formula
![\begin{gathered} \text{Density(d)}=\frac{mass(m)}{\text{volume(v)}} \\ d=\frac{45.3\text{ gr}}{11.289012(cm^3)} \\ d=4.012(gr)/(cm^3) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/zhbx7x2j8yej5emh2a4nhg82a41twzb5l4.png)
therefore, the answer is
![4.012(gr)/(cm^3)](https://img.qammunity.org/2023/formulas/physics/college/jinmguzmjnzfm6wfb3qvgtnffcqm3915kt.png)
I hope this helps you