Answer:
Sin A = 16/20
Cos B = 12/20
tan A =16/12
Step-by-step explanation:
sin is defined as
![\sin A=(opposite)/(hypotenuse)](https://img.qammunity.org/2023/formulas/mathematics/college/7zoe6tpxi5a6dmqzwlk83j31gjlx3jf2fs.png)
Now the side opposite to angle A measures 16 and the hypotenuse measures 20; therefore,
![\sin A=(16)/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/ph7dyj58zmb3y2pljge0v0m3yhwppp15vb.png)
Similarly,
![\cos A=\frac{\text{adjacent}}{hypotenuse}](https://img.qammunity.org/2023/formulas/mathematics/college/kphyu60zjuigxikolhcsnel94ojrnub1nq.png)
since for angle A adjacent = 12 and hypotenuse = 20, the above gives
![\cos A=(12)/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/jq6r0ft9tq8483ctg3s1w9i9yfj4haxaeq.png)
Finally, the tangent ratio gives
![\tan A=(opposite)/(adjacent)](https://img.qammunity.org/2023/formulas/mathematics/college/jp2an3vcpdaciwbx77zlpphv998h5bgbdd.png)
since opposite = 16 and adjacent = 12, the above gives
![\tan A=(16)/(12)](https://img.qammunity.org/2023/formulas/mathematics/college/cz9pbn1l314d4nywul2z05sxln4q762vv7.png)
Hence, to summerize ur results