Concept
![\begin{gathered} \text{The volume of a cylinder = }\pi r^2h \\ \pi\text{ = 3.14} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z1zzkz4f4l3loa5qn6pqmdlfmh4g772fjm.png)
r = radius
h = height
Step 1: Find the radius of both A and B
Radius of A r = 24/2 = 12 feet
Radius of B = 16/2 = 8 feet
Step 2: Find the volume of A and B
![\begin{gathered} \text{Given data} \\ A \\ r\text{ = 12} \\ h\text{ = 14} \\ \text{Volume = }\pi r^2h \\ =\text{ 3.14 }*12^2\text{ }*\text{ 14} \\ =6330.24ft^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/86uis1ueob4141ghrlpu5vr4xnutyys3n7.png)
![\begin{gathered} B \\ r\text{ = 8} \\ h\text{ = 16} \\ \text{Volume = }\pi r^2h \\ =\text{ 3.14 }*8^2\text{ }*\text{ 16} \\ =3215.36ft^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/133xvs04niyzcckksicdvjed7fayucq2rk.png)
Step 3: To find the percentage of container A that is empty after the pumping is complete, you find the volume of space in the container A
Volume of space in container A = Volume of water pumped into B = 3215.36
Step 4: percent of Container A that is empty after the pumping is complete
![\begin{gathered} \text{Percent of container A that is empty after pumping is complete } \\ =\text{ }(3215.36)/(6330.24)\text{ }*\text{ 100\%} \\ =\text{ }(321536)/(6330.24) \\ =\text{ 50.79\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4massa0p6yuo1da7730omkmnx57y8qv95a.png)
Final answer
= 50.8%