ANSWER
s = 7.38
Step-by-step explanation
The standard deviation, s, of a sample is the square root of the variance, s²,
![s^2=(1)/(n-1)\sum_{i\mathop{=}1}^n(x_i-\bar{x})^2](https://img.qammunity.org/2023/formulas/mathematics/college/80ycym90511lfebh8vcv69g4yjgz5z3v9p.png)
Where n is the number of data, 5, and x with the line on top is the mean,
![\bar{x}=(14+16+13+31+21)/(5)=19](https://img.qammunity.org/2023/formulas/mathematics/college/lf8hpvuvm9uvyg7oer6cob2hlcr22798ap.png)
So the variance is,
![s^2=(1)/(5-1)((14-19)^2+(16-19)^2+(13-19)^2+(31-19)^2+(21-19)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/zg3gmoz6xxmhuy5kkp5weefd74qgmkg5i1.png)
Solve the subtractions,
![s^2=(1)/(4)((-5)^2+(-3)^2+(-6)^2+(12)^2+(2)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/3zsv1y7xmxbayy6yhxvcn69e2vqowklhr5.png)
Solve the squares, add and divide by 4,
![s^2=(1)/(4)(25+9+36+144+4)=(218)/(4)=54.5](https://img.qammunity.org/2023/formulas/mathematics/college/6mkrclvcqblkflj7syqa4lfu3hsww17a7k.png)
Finally, to find the standard deviation, take the square root,
![s=√(54.5)\approx7.38](https://img.qammunity.org/2023/formulas/mathematics/college/c4izzgcu7zox783g7q6n3113rxulklmy1x.png)
Hence, the standard deviation is 7.38, rounded to the nearest hundredth.