206k views
1 vote
. Find the equation of the secant line on the graph of

. Find the equation of the secant line on the graph of-example-1
User Basiam
by
3.0k points

1 Answer

3 votes

Given:


f(x)=3.5x^2-6x

Line passes the point is:


x_{1\text{ }}and_{}(\square)/(\square)x_2
\begin{gathered} x_1=5 \\ f(x_1)=3.5x^2_1-6x_1 \\ =3.5(5)^2-(6)5_{} \\ =87.5-30 \\ =57.5 \\ \text{ line pass=(5,57.5)} \end{gathered}
\begin{gathered} x_2=10 \\ f(x_2)=3.5(10)^2-6(10)_{} \\ =350-60 \\ =290 \\ \end{gathered}

line is y = mx+c


m=(y_2-y_1)/(x_2-x_1)
\begin{gathered} m=(290-57.5)/(10-5) \\ m=(232.5)/(5) \\ m=46.5 \end{gathered}

Eq of line is:

y


\begin{gathered} y=46.5x+c \\ 290=46.5*10+c \\ c=290-465 \\ c=-175 \end{gathered}

So euation of line is:


\begin{gathered} y=mx+c \\ y=46.5x-175 \end{gathered}

User Notitze
by
4.5k points