To answer this question we will set and solve an equation.
Since the height of the ball above the ground after t seconds is:
![H(t)=(97t-16t^2)ft,](https://img.qammunity.org/2023/formulas/mathematics/high-school/neks4ofxx1au8oh8iki9zqqx6e75z7sp37.png)
then its velocity after t seconds is:
![H^(\prime)(t)=(97-32t)(ft)/(s).](https://img.qammunity.org/2023/formulas/mathematics/high-school/vahdu4wdo9u807g37n3aqn7f4otnihkoti.png)
Setting H'(t)=48.5ft/s we get:
![48.5(ft)/(s)=(97-32t)(ft)/(s).](https://img.qammunity.org/2023/formulas/mathematics/high-school/l439aokqev5o7ys2jbuc2noqsjgd7cbn30.png)
Therefore:
![48.5=97-32t.](https://img.qammunity.org/2023/formulas/mathematics/high-school/5wxb1m1l0aqlomdzuka32b68eneupfpa86.png)
Subtracting 97 from the above equation we get:
![\begin{gathered} 48.5-97=97-32t-97, \\ -48.5=-32t. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jiq0hqjkhhl9pjn7ei8orkrj45jbhofaw7.png)
Dividing the above equation by -32 we get:
![\begin{gathered} (-48.5)/(-32)=(-32t)/(-32), \\ t\approx1.516. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/e8a8cvdhifx70jtlx692f5nescox43n2h4.png)
Answer:
![t=1.516\text{ seconds}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nfniqptal6rcxnt7vjyew7q0phlpdl9qib.png)