You know that:
- She puts a population of 300 bacteria into a favorable growth medium at 8:00 A.M.
- At 5:00 P.M. the population is 1100 bacteria,
- The next morning, at 8:00 A.M. she comes back to the lab.
By definition, an Exponential Growth Model has the following form:
![P=P_0e^(rt)](https://img.qammunity.org/2023/formulas/mathematics/college/mr87duken6r31rnjh40asult470x3gyx8c.png)
Where "r" is the growth rate (in decimal form), "t" is the number of times intervals and this is the initial amount:
![P_0](https://img.qammunity.org/2023/formulas/mathematics/high-school/4lwfddem7u6g2ox428zimvdbhswybov65f.png)
1. In this case, from 8:00 A.M to 5:00 P.M. you know that:
![\begin{gathered} P=1100 \\ t=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gskb3d3qcbz69naphuas815fwy2gwoljzx.png)
And the initial amount is:
![P_0=300](https://img.qammunity.org/2023/formulas/mathematics/college/3iwlevws5ge9rjmm5vl4ul4rlr91byrahk.png)
2. Then, you can substitute values into the equation and solve for "r", in order to find its value:
![\begin{gathered} P=P_0e^(rt) \\ \\ 1100=300\cdot_{}e^(r(9)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jffeeb8fjz2l0k8khze8itfmutxz3nn5cz.png)
![(1100)/(300)=e^(9r)](https://img.qammunity.org/2023/formulas/mathematics/college/e3lzivn0i7zxknw1p2yetq6k5q08dnhfb7.png)
Remember the following properties:
![\begin{gathered} ln(a)^m=m\cdot\log (a)^{} \\ \\ \ln (e)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sstwzztnfcapoqbetog2v7vbsjgdy6ujxl.png)
Then taking Natural Logarithm on both sides and simplifying, you get:
![\begin{gathered} \ln ((1100)/(300))=\ln (e)^(9r) \\ \\ \ln ((1100)/(300))=9r\cdot\ln (e) \\ \\ \ln ((1100)/(300))=9r(1) \\ \\ \ln ((1100)/(300))=9r \\ \\ (\ln ((1100)/(300)))/(9)=r \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/at0qqebub5gvi5zpks4ebu7lmaknegf6kb.png)
![r\approx0.1444](https://img.qammunity.org/2023/formulas/mathematics/college/eq9riun1q8bhzgqi6gug2si7zl2rd4s9qv.png)
3. From 8:00 A.M. to 8:00 A.M in the next morning, there are 24 hours. Then, you can say that:
![\begin{gathered} P_0=300 \\ r\approx0.1444 \\ t=24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j8u670tpfdxr2xsbzbzssipqlueyhpum44.png)
Now you can substitute values and find the number of bacteria at 8:00 A.M of the next morning:
![\begin{gathered} P=P_0e^(rt) \\ \\ P=300\cdot e^((0.1444)(24)) \\ \\ P=300\cdot e^((3.4656)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ayrjvh85hc152jhmut2l11jjp7n7q6hwvu.png)
![P\approx9599](https://img.qammunity.org/2023/formulas/mathematics/college/79vtrnwtncadckecrh2h3933rcn0i2rs9k.png)
Hence, the answer is:
![P\approx9599](https://img.qammunity.org/2023/formulas/mathematics/college/79vtrnwtncadckecrh2h3933rcn0i2rs9k.png)