For this problem, we are given the perimeter of a rectangle and a relation between the width and the length. We need to determine the width.
The perimeter of a rectangle is given by:
![P=2(\text{ width + length\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/c5jmrlijxqa5jrt3r02yrvtg1ef4wkcgfz.png)
Therefore, we have:
![2\text{ width}+2\text{ length}=64](https://img.qammunity.org/2023/formulas/mathematics/college/qs7mnz7kyltp7raxoocwdpv0egr6jcj7ng.png)
We know that the width is 6 centimeters less than the length, therefore we can write the expression below:
![\text{ width}=\text{ length}-6](https://img.qammunity.org/2023/formulas/mathematics/college/4dypml5nujrh2d9xbf4ecr92dab4uttn5c.png)
If we replace the expression above on the second one, we have:
![\begin{gathered} 2(\text{ length}-6)+2\text{ length}=64\\ \\ 2\text{ length}-12+2\text{ length}=64\\ \\ 4\text{ length}=64+12\\ \\ 4\text{ length}=76\\ \\ \text{ length}=(76)/(4)=19 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/36ucjybvsgnuefiiqz7diykxps2vo8snba.png)
We can use this value to find the width, which is:
![\text{ width}=19-6=13](https://img.qammunity.org/2023/formulas/mathematics/college/7o8hmil27mroxyiixy7ms8ri4advz8dr12.png)
The width is equal to 13 cm.