Given the Quadratic Equation:
![x^2-5x+6=0](https://img.qammunity.org/2023/formulas/mathematics/college/uwzewp0shxsol37as7nfovx944xxf5vfx1.png)
1. Find the x-intercepts:
- Factor the equation by finding two numbers whose sum is -5 and whose product is 6. These are -2 and -3, because:
![\begin{gathered} -2-3=-5 \\ (-2)(-3)=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qyxr8rpcm3prah1nunwbmr3wuap2w9ln56.png)
Then:
![(x-2)(x-3)=0](https://img.qammunity.org/2023/formulas/mathematics/college/ybnnri0abkritcj6ctyxoxg5ixra2036sg.png)
- Now you know that the x-intercepts are:
![\begin{gathered} x_1=2 \\ x_2=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m9sb3b81qhlisl04fzwnznwnrwcd9no3rn.png)
2. Now you need to graph this function:
![y=x^2-5x+6](https://img.qammunity.org/2023/formulas/mathematics/college/9tsbet8he4df53fhzn1q82fg8lr7nad0sd.png)
In order to find the graph with better precision, you can find the vertex:
- Find the x-coordinate with this formula:
![x=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/7gr846x3106wifbv8ib3mo7x3lghpti0f2.png)
In this case, knowing that the function has the form:
![y=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7mvpjunjwe6qob7ddy7l4f0glbtdi9gci.png)
You can identify that:
![\begin{gathered} b=-5 \\ a=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qdqjbla37q23k4gobtl25aec76zpwe9dp9.png)
Then, you get:
![x=-((-5))/(2(1))=(5)/(2)=2.5](https://img.qammunity.org/2023/formulas/mathematics/college/wjw4vjwu9j0b8t50l11kkmxpcusygt2qod.png)
- Find the y-coordinate of the vertex by substituting the x-coordinate into the function and evaluating:
![y=(2.5)^2-5(2.5)+6=-0.25](https://img.qammunity.org/2023/formulas/mathematics/college/7fpyos1x61vdco2tvbspmblrrouzk0707w.png)
Hence, the vertex of the parabola is:
![(2.5,-0.25)](https://img.qammunity.org/2023/formulas/mathematics/college/4acmr7vk222orxashrxzfhspwf34gliczc.png)
3. To find two other points on the parabola, you can substitute these values into the function and evaluate:
![\begin{gathered} x=2.2 \\ x=2.7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1p5u7chs7mg5ksku2xwo155508aum3syeo.png)
Then, you get:
![\text{For }x=2.2\rightarrow y=(2.2)^2-5(2.2)+6=-0.16](https://img.qammunity.org/2023/formulas/mathematics/college/z63q13qmj6npiwlofms43gsceojwlqker1.png)
![\text{For }x=2.7\rightarrow y=(2.7)^2-5(2.7)+6=-0.21](https://img.qammunity.org/2023/formulas/mathematics/college/r6hokkezabgsozq0psg7b28v571832zvoy.png)
Therefore, you know these two other points:
![\mleft(2.2,-0.16\mright),\mleft(2.7,-0.21\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/vtl46ru239sut7ge2efk2cut0sx1oxfn02.png)
Hence, the answer is: