197k views
5 votes
If sin theta=3 divided by square root 15 and angle theta is in Quadrant I, what is the exact value of tan 2 theta insimplest radical form?

User Lajlev
by
8.3k points

1 Answer

1 vote

The given information is:


\sin \theta=\frac{3}{\sqrt[]{15}}

And angle theta is in quadrant I, then know that:


\sin (x)=\frac{opposite}{\text{hypotenuse}}=(y)/(r)

Then y=3 and r=square root (15)

By the Pythagorean theorem we can find x:


\begin{gathered} r^2=x^2+y^2 \\ x^2=r^2-y^2 \\ x=\sqrt[]{r^2-y^2} \\ x=\sqrt[]{(\sqrt[]{15})^2-3^2} \\ x=\sqrt[]{15-9} \\ x=\sqrt[]{6} \end{gathered}

And the tangent is:


\begin{gathered} \tan (x)=(y)/(x) \\ \tan \theta=\frac{3}{\sqrt[]{6}} \end{gathered}

Thus, tan 2theta:


\begin{gathered} \tan 2\theta=(2\tan\theta)/(1-\tan^2\theta) \\ \tan 2\theta=\frac{2\frac{3}{\sqrt[]{6}}}{1-(\frac{3}{\sqrt[]{6}})^2} \\ \tan 2\theta=\frac{\frac{6}{\sqrt[]{6}}}{1-(9)/(6)} \\ \tan 2\theta=\frac{\frac{6}{\sqrt[]{6}}}{-(3)/(6)} \\ \tan 2\theta=\frac{\frac{6}{\sqrt[]{6}}}{-(1)/(2)} \\ \tan 2\theta=\frac{6\cdot2}{-1\cdot\sqrt[]{6}} \\ \tan 2\theta=\frac{12}{-\sqrt[]{6}} \\ \tan 2\theta=-\frac{12}{\sqrt[]{6}} \end{gathered}

Then the exact value of tan 2theta in simplest radical form is -12/square root(6)

User Nee
by
8.1k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories