57.9k views
5 votes
(Word problem)How can the associative , commutative , and distributive properties be applied when performing operations on complex numbers and polynomials ?

1 Answer

5 votes

1. Complex numbers:

Let's probe associative, commutative and distributive properties for any three complex numbers:

Let Z1=a+ix, Z2=b+iy and Z3=c+iz

a. Associative property: (z1+z2)+z3=z1+(z2+z3)

Then:

(z1+z2)+z3=((a+ix)+(b+iy))+c+iz

=(a+b+ix+iy)+c+iz

=(a+b+i(x+y))+c+iz

=a+b+c+i(x+y+z))

=a+b+c+ix+iy+iz

=a+ix+(b+c+iy+iz)

=a+ix+((b+iy)+(c+iz))

=z1+(z2+z3)

Hence, complex numbers follow the associative property.

b. Commutative property: z1+z2=z2+z1

Then:

z1+z2=(a+ix)+(b+iy)

=a+ix+b+iy

=b+iy+a+ix

=(b+iy)+(a+ix)

=z2+z1

Hence, complex numbers follow the commutative property.

c. Distributive property: z1(z2+z3)=z1*z2+z1*z3

z1*(z2+z3)=(a+ix)[(b+iy)+(c+iz)]

=(a+ix)*(b+iy)+(a+ix)(c+iz)

=z1*z2+z1*z3

Hence, complex numbers follow the distributive property.

2. Polynomials:

Let P=ax+b, Q=ax^2+bx+c, R=bx+c

a. Associative property: (P+Q)+R=P+(Q+R)

(P+Q)+R=[(ax+b)+(ax^2+bx+c)]+bx+c

=[ax^2+ax+bx+b+c]+bx+c

=(ax+b)+[(ax^2+bx+c)+(bx+c)]

=P+(Q+R)

Polynomials follow the associative property

b. Commutative property: P+R=R+P

P+R=(ax+b)+(bx+c)

=ax+b+bx+c

=bx+c+ax+b

=(bx+c)+ax+b)

=R+P

Polynomials follow the commutative property.

d. Distributive property: P(Q+R)=PQ+QR

P(Q+R)=(ax+b)[(ax^2+bx+c)+(bx+c)]

=ax^3+abx^2+acx+abx^2+acx+abx^2+b^2x+bc+b^2x+bc

=ax^3+3abx^2+2acx+2b^2x+2bc

PQ+QR=(ax+b)(ax^2+bx+c)+(ax+b)(bx+c)

=ax^3+abx^2+acx+abx^2+b^2x+bc+abx^2+acx+b^2x+bc

=ax^3+3abx^2+2acx+2b^2x+2bc

Then:

P(Q+R)=PQ+PR

Polynomials follow the distributive property.

User Feline
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories