EXPLANATION
Geometric Progression:
A geometric sequence has a constant ratio r and is defined by:
![a_n=a_0\cdot r^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/xlj7y9adc3y28e1zt5f6bj9vit3pz3c08k.png)
Check wheter the ratio is constant: r=-4
2, -8 , 32, -128
Compute the ratios of all the adjacent terms:
-8/2= -4, 32/-8=-4, -128/32=-4
The ratio of all the adjacent terms is the same and equal to:
r=-4
The first element of the sequence is:
a_1=2
![a_n=a_1\cdot r^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/usnb6cvy5q0c41ojuruucgvjnfnf10g7si.png)
Therefore, the nth term is computed by
r=-4,
![a_n=2(-4)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/mcuv29oy28wn30hlib7rn597jizbpeubgf.png)