Let's first identify at least two points that pass through the given line.
Let's use the following points:
Point A: x1, y1 = 0, -7
Point B: x2, y2 = 6, 2
a.) Let's determine the slope of the original line:
![\text{ m = }(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/ymd7mhhb7d646rb8sykqvkf7t4fjaipgxf.png)
![\text{ = }\frac{2\text{ - (-7)}}{6\text{ - 0}}\text{ = }\frac{2\text{ + 7}}{6}](https://img.qammunity.org/2023/formulas/mathematics/college/7qpl4kzr19x8p6ddmlawxn6xc8r6w8svo6.png)
![\text{ m = }(9)/(6)\text{ = }((9)/(3))/((6)/(3))\text{ = }(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/dzxfd8yinad5qzn88xntprvlz2mmy54c8e.png)
Therefore, the slope of the given line is 3/2.
b.) Let's determine the slope of the line perpendicular to the given line:
![\text{ m}_(\perp)\text{ = -}\frac{1}{\text{ m}}\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/czpdd3es3ib8nf1jmvmfnxxwxy2tq1ru4l.png)
![\text{ = -}(1)/((3)/(2))\text{ = -1 x }(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/mvf54jo3sx3ta87wz2rxbszcz1n30tmj9n.png)
![\text{ m}_(\perp)\text{ = -}(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/lhuc7zuu62ez0seum34r3fpjsgnbtw6wro.png)
Therefore, the slope of the line perpendicular to the given line is -2/3.
c.) Let's plot the graph of the perpendicular line.
Let's first determine the equation of the given line.
m = 3/2
x,y = 0, -7
y = mx + b
-7 = (3/2)(0) + b
-7 = b
y = mx + b
y = 3/2x - 7
Let's determine the equation of the perpendicular line.
m = -2/3
x,y = 0, -7 ; let's use this as the point of intersection.
y = mx + b
-7 = -2/3(0) + b
-7 = b
y = mx + b
y = -2/3x - 7
Let's now plot the graph.