To find the initial population, we evaluate
![P(t)=(800)/(1+4e^(-0.31t))](https://img.qammunity.org/2023/formulas/mathematics/college/up0n5bi9xkhk3n7ojs3eb8mw1n6nzjmfhs.png)
at t=0:
![\begin{gathered} P(0)=\frac{8_{}00}{1+4e^(-0.31\cdot0)}=\frac{8_{}00}{1+4e^0} \\ =\frac{8_{}00}{1+4}=(800)/(5)=160. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/65xwqggvqoazwbobl4au0hiiscsa2m69pf.png)
Therefore, the initial population was 160 individuals.
To find the population after 10 years, we evaluate the given function at t=10:
![\begin{gathered} P(10)=(800)/(1+4e^(-0.31*10))=(800)/(1+4e^(-3.1)) \\ \approx678. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/geda5la2aocnhv01t3xnj0goyp8i597zbo.png)
Therefore, the population after 10 years is 678 individuals.
Answer:
The initial population was 160 individuals.
The population after 10 years is 678 individuals.