219k views
3 votes
X = ? y = ? 16 45 degrees

User JamesD
by
8.8k points

1 Answer

0 votes

Let's put more details in the figure to better understand the problem:

Let's first recall the three main trigonometric functions:


\text{ Sine }\theta\text{ = }\frac{\text{ Opposite Side}}{\text{ Hypotenuse}}
\text{ Cosine }\theta\text{ = }\frac{\text{ Adjacent Side}}{\text{ Hypotenuse}}
\text{ Tangent }\theta\text{ = }\frac{\text{ Opposite Side}}{\text{ Adjacent Side}}

For x, we will be using the Cosine Function:


\text{ Cosine }\theta\text{ = }\frac{\text{ Adjacent Side}}{\text{ Hypotenuse}}
Cosine(45^(\circ))\text{ = }\frac{\text{ x}}{\text{ 1}6}
(16)Cosine(45^(\circ))\text{ = x}
(16)(\frac{1}{\sqrt[]{2}})\text{ = x}
\text{ }\frac{16}{\sqrt[]{2}}\text{ x }\frac{\sqrt[]{2}}{\sqrt[]{2}}\text{ = }\frac{16\sqrt[]{2}}{2}
\text{ 8}\sqrt[]{2}\text{ = x}

Therefore, x = 8√2.

For y, we will be using the Sine Function.


\text{ Sine }\theta\text{ = }\frac{\text{ Opposite Side}}{\text{ Hypotenuse}}
\text{ Sine }(45^(\circ))\text{ = }\frac{\text{ y}}{\text{ 1}6}
\text{ (16)Sine }(45^(\circ))\text{ = y}
\text{ (16)(}\frac{1}{\sqrt[]{2}})\text{ = y}
\text{ }\frac{16}{\sqrt[]{2}}\text{ x }\frac{\sqrt[]{2}}{\sqrt[]{2}}\text{ = }\frac{16\sqrt[]{2}}{2}
\text{ 8}\sqrt[]{2}\text{ = y}

Therefore, y = 8√2.

X = ? y = ? 16 45 degrees-example-1
User Martiall
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories