219k views
3 votes
X = ? y = ? 16 45 degrees

User JamesD
by
5.7k points

1 Answer

0 votes

Let's put more details in the figure to better understand the problem:

Let's first recall the three main trigonometric functions:


\text{ Sine }\theta\text{ = }\frac{\text{ Opposite Side}}{\text{ Hypotenuse}}
\text{ Cosine }\theta\text{ = }\frac{\text{ Adjacent Side}}{\text{ Hypotenuse}}
\text{ Tangent }\theta\text{ = }\frac{\text{ Opposite Side}}{\text{ Adjacent Side}}

For x, we will be using the Cosine Function:


\text{ Cosine }\theta\text{ = }\frac{\text{ Adjacent Side}}{\text{ Hypotenuse}}
Cosine(45^(\circ))\text{ = }\frac{\text{ x}}{\text{ 1}6}
(16)Cosine(45^(\circ))\text{ = x}
(16)(\frac{1}{\sqrt[]{2}})\text{ = x}
\text{ }\frac{16}{\sqrt[]{2}}\text{ x }\frac{\sqrt[]{2}}{\sqrt[]{2}}\text{ = }\frac{16\sqrt[]{2}}{2}
\text{ 8}\sqrt[]{2}\text{ = x}

Therefore, x = 8√2.

For y, we will be using the Sine Function.


\text{ Sine }\theta\text{ = }\frac{\text{ Opposite Side}}{\text{ Hypotenuse}}
\text{ Sine }(45^(\circ))\text{ = }\frac{\text{ y}}{\text{ 1}6}
\text{ (16)Sine }(45^(\circ))\text{ = y}
\text{ (16)(}\frac{1}{\sqrt[]{2}})\text{ = y}
\text{ }\frac{16}{\sqrt[]{2}}\text{ x }\frac{\sqrt[]{2}}{\sqrt[]{2}}\text{ = }\frac{16\sqrt[]{2}}{2}
\text{ 8}\sqrt[]{2}\text{ = y}

Therefore, y = 8√2.

X = ? y = ? 16 45 degrees-example-1
User Martiall
by
5.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.