We are given the surface area of a cone and we are asked to find its diameter. To do that, let's remember the formula for the surface area of a cone:
![A=\pi r^2+\pi rl](https://img.qammunity.org/2023/formulas/mathematics/college/er203uf7jax0ssel2jj5zvoc6tprb8anwi.png)
Where "r" is the radius, "h" is the height and "l" is the slant height. We are given the following values:
![\begin{gathered} A=500ft^2 \\ l=20ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z44j4ro1i51o13p230r8org471uttqqn3i.png)
Replacing in the formula we get:
![500=\pi r^2+20\pi r](https://img.qammunity.org/2023/formulas/mathematics/college/av2worff26g5ce9y0xmjglrhw8h14eb28h.png)
Now we need to solve for "r", to do that we will subtract 500 on both sides:
![\pi r^2+20\pi r-500=0](https://img.qammunity.org/2023/formulas/mathematics/college/cajvhp7ksy4dxqh1za5dwdxjpox03uc2ob.png)
Now we will use the quadratic formula to find the values of "r". The quadratic formula is the following:
![r=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/tw1mhsr6g1g4rwd5o7rle7wu167ecb7ewa.png)
Where:
![\begin{gathered} a=\pi \\ b=20\pi \\ c=-500 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/knf01s4luwe6v72mplc6dzf09br4burbsv.png)
Replacing in the quadratic formula we get:
![r=\frac{-20\pi\pm\sqrt[]{400\pi^2-4(\pi)(-500)}}{2\pi}](https://img.qammunity.org/2023/formulas/mathematics/college/123dxrn4scwiw57ob1e5j6fi8ayza1g6wo.png)
simplifying:
![r=\frac{-20\pi\pm\sqrt[]{400\pi^2+2000\pi}}{2\pi}](https://img.qammunity.org/2023/formulas/mathematics/college/du8j8x98a6sxtpcx4pwrkybwf24ci22f8o.png)
Solving the operations inside the radical we get:
![r=(-20\pi\pm101.15)/(2\pi)](https://img.qammunity.org/2023/formulas/mathematics/college/f8dq6h94v4ce1lenga7yozc9j12r21spcd.png)
Now we take the positive sing and solve the operations, like this:
![r=(-20\pi+101.15)/(2\pi)=6.1](https://img.qammunity.org/2023/formulas/mathematics/college/p7x2e89ko2fba00acy1mrorl801s7ay2f2.png)
Taking the negative sing we get:
![r=(-20\pi-101.15)/(2\pi)=-26.1](https://img.qammunity.org/2023/formulas/mathematics/college/zrrfl2up61hermtlx57ioif7kod7jhabqp.png)
Since the radius should be a positive quantity we take the first value, therefore the radius is 6.1 ft. To get the diameter we use:
![D=2r](https://img.qammunity.org/2023/formulas/mathematics/college/okh315b5oalh1q6odsxx6vt70mnbu0mx1e.png)
Therefore the diameter is:
![D=2(6.1ft)=12.2ft](https://img.qammunity.org/2023/formulas/mathematics/college/84hrkohmqfxgcqljzz2edclc5i594luox0.png)