187k views
1 vote
Which of the extrema below does the the function f(x) = x³ − 2x³ + 1 have? 1. absolute maximum II. absolute minimum III. local maximum IV. local minimum ACTS A. I and Ill only B. I, II, III, and IV OC. I and II only OD. III and IV only Portions of this soft

Which of the extrema below does the the function f(x) = x³ − 2x³ + 1 have? 1. absolute-example-1
User Binder
by
2.9k points

1 Answer

5 votes

f\left(x\right)\:=\:x^5-2x^3+1
f^(\prime)(x)=5x^4-6x^2
\mathrm{Suppose\:that\:}x=c\mathrm{\:is\:a\:critical\:point\:of\:}f\left(x\right)\mathrm{\:then,\:}
\mathrm{If\:}f\:'\left(x\right)>0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:maximum.}
\mathrm{If\:}f\:'\left(x\right)<0\mathrm{\:to\:the\:left\:of\:}x=c\mathrm{\:and\:}f\:'\left(x\right)>\:0\mathrm{\:to\:the\:right\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:a\:local\:minimum.}
\mathrm{If\:}f\:'\left(x\right)\mathrm{\:is\:the\:same\:sign\:on\:both\:sides\:of\:}x=c\mathrm{\:then\:}x=c\mathrm{\:is\:neither\:a\:local\:maximum\:nor\:a\:local\:minimum.}
f^(\prime)(x)=5x^4-6x^2=0\text{ }\rightarrow x\text{ }^2(5x^2\text{ - 6})=0

then at x = 0 and x = (6/5)^(1/2) the function has critical points. Minding the sign of f', one obtains that there are only local maximum and local minimum, so the answer is D.

User Dragos Durlut
by
2.7k points