Given:
The system of the equation is,
![\begin{gathered} 2x+5y=0 \\ x+6y=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pcw4nvjd5ttkgnb74es3xtt8yepa32kwe1.png)
Draw the lines on the graph, the point at which the lines intersects. That point will be the solution of the system.
The points on the line 2x+5y=0 are,
![\begin{gathered} 2x+5y=0 \\ x=0\Rightarrow y=0 \\ x=5\Rightarrow y=-2 \\ x=-10\Rightarrow y=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/e3s7lgf43hhx8bc14ewnlot4o9ynrm26v8.png)
And the points on the line x+6y=14
![\begin{gathered} x+6y=14 \\ x=0\Rightarrow y=(7)/(3) \\ x=14\Rightarrow y=0 \\ x=-10\Rightarrow y=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mm9atf0oyk8jwv3x2x9rcl276yicoxn7vk.png)
The graph of the lines is,
As the point of intersection is ( -10,4).
The solution of the given system of equation is x = -10, y = 4.