Therefore, the exact values of the six trigonometric functions at
are:
![\[\sin \theta = -(√(3))/(2), \cos \theta = -(1)/(2), \tan \theta = -√(3), \csc \theta = -(2)/(√(3)), \sec \theta = -2, \cot \theta = -(1)/(√(3))\]](https://img.qammunity.org/2023/formulas/mathematics/college/im845ppiizd5bu5r0b5ddo6dj53hjps782.png)
Given:

Part A: Coterminal Angle of
such that

To find the coterminal angle within the range \(0 \leq \theta \leq 2\pi\), let's add
to
until we obtain an angle within the desired range:

Adding
:
![\[\theta_{\text{co-terminal}} = -(8\pi)/(3) + 2\pi = -(8\pi)/(3) + (6\pi)/(3) = -(2\pi)/(3)\]](https://img.qammunity.org/2023/formulas/mathematics/college/lj5fpwpdgdxn7chrdtl89weyzey20re0pc.png)
Therefore, a coterminal angle of
such that

Part B: Exact Values of Trigonometric Functions at

To find the exact values of the trigonometric functions at
, we can use the properties of trigonometric functions related to the unit circle.
Given
, which is in the third quadrant (since it is more than
:
Let's evaluate the trigonometric functions at this angle:
Given:
- Sine

- Cosine

- Tangent

- Cosecant

- Secant

- Cotangent

Let's calculate these values using the properties of trigonometric functions and the unit circle:
The reference angle for
In the third quadrant, sine and cosine are negative:
![\[\sin \theta = -\sin\left((\pi)/(3)\right) = -(√(3))/(2)\]](https://img.qammunity.org/2023/formulas/mathematics/college/28nz4vdwpz5420qk7x8t047ra4tq7cgitm.png)
![\[\cos \theta = -\cos\left((\pi)/(3)\right) = -(1)/(2)\]](https://img.qammunity.org/2023/formulas/mathematics/college/hojokl8njypefqv7oupxv5izqvxrqqzrwe.png)
![\[\tan \theta = \tan\left((\pi)/(3)\right) = -√(3)\]](https://img.qammunity.org/2023/formulas/mathematics/college/21j242630kaagkxjorogodfzgojorzs1lr.png)
![\[\csc \theta = -(1)/(\sin \theta) = -(2)/(√(3))\]](https://img.qammunity.org/2023/formulas/mathematics/college/o951zbsi39gamnv53kjjhk08fskr5ozl40.png)
![\[\sec \theta = -(1)/(\cos \theta) = -2\]](https://img.qammunity.org/2023/formulas/mathematics/college/lwqesaq4nihatbddme63cse92hwz2xqepm.png)
![\[\cot \theta = -(1)/(\tan \theta) = -(1)/(√(3))\]](https://img.qammunity.org/2023/formulas/mathematics/college/mx06p51ed24dqx4b7t85ptznaxiygz8ijg.png)