Step 1
Given; 574, 526, 512, 579, 595, 517, 524, 552, 558, 541
Required; To create a box plot
Step 2
Arrange in ascending order
![512,\:517,\:524,\:526,\:541,\:552,\:558,\:574,\:579,\:595](https://img.qammunity.org/2023/formulas/mathematics/college/jq53fq0qydeqobik4kiqjngdqin1b79eve.png)
Find the lower quartile
![\begin{gathered} \mathrm{The\:first\:quartile\:is\:computed\:by\:taking\:the\:median\:of\:the\:lower\:half\:of\:a\:sorted\:set.} \\ 524 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ufzd4gkzseh16v4v5qfzazul83l78roqzd.png)
Find the upper quartile
![\begin{gathered} The\:third\:quartile\:is\:computed\:by\:taking\:the\:median\:of\:the\:higher\:half\:of\:a\:sorted\:set \\ 574 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p38sufjty5ekk62262t63zon5pi29uj248.png)
The median is the middle number of the entire data
![=(541+552)/(2)=546.5](https://img.qammunity.org/2023/formulas/mathematics/college/xhsgqkbc6y38eyc592esx6z6oowk6bkmyl.png)
The maximum and minimum values are;
![595\text{ and 512 respectively}](https://img.qammunity.org/2023/formulas/mathematics/college/yzkb4a33cfsbo544k0vyoxyw0hujdn6hp8.png)